首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 35-amino acid cytoplasmic tail of the adhesion receptor P-selectin is subdivided into stop transfer, C1 and C2 domains. It contains structural signals needed for targeting this protein to specialized secretory organelles and to lysosomes. Recently, using site-directed mutagenesis of horseradish peroxidase-P-selectin chimeras, we have uncovered a novel sequence within the C1 domain, KCPL, that mediates sorting from early, transferrin-positive endosomes to lysosomes and therefore operates as a positive lysosomal targeting signal (Blagoveshchenskaya, A. D., Norcott, J. P. , and Cutler, D. F. (1998) J. Biol. Chem. 273, 2729-2737). In the current study, we examined lysosomal targeting by both subcellular fractionation and an intracellular proteolysis assay and found that a balance of positive and negative signals is required for proper lysosomal sorting of P-selectin. First, we have found that within the sequence KCPL, Cys-766 plays a major role along with Pro-767, whereas Lys-765 and Leu-768 make no contribution to promoting lysosomal targeting. In addition, horseradish peroxidase-P-selectin chimeras were capable of acylation in vivo with [3H]palmitic acid at Cys-766, since no labeling of a chimera in which Cys-766 was replaced with Ala was detected. Second, analysis of mutations within the C2 domain revealed that substitution of two sequences, YGVF and DPSP, causes an increase in both lysosomal targeting and intracellular proteolysis suggesting the presence of lysosomal avoidance signals. The inhibition or promotion of lysosomal targeting resulted from alterations in endosomal sorting since internalization was not changed in parallel with lysosomal delivery. Analysis of the double mutants KCPL/YGVF or KCPL/DPSP revealed that although the positive lysosomal targeting signal operates in the early/sorting transferrin-positive endosomes, the negative lysosomal targeting (lysosomal avoidance) signals act at later stages of the endocytic pathway, most likely in late endosomal compartments.  相似文献   

2.
Signals controlling the intracellular targeting of many membrane proteins are present as short sequences within their cytoplasmic domains. P-selectin is a type I membrane protein receptor for leukocytes, acting during the inflammation response. Heterologous expression experiments have demonstrated that its 35-residue cytoplasmic tail contains signals for targeting to synaptic-like microvesicles, dense-cored granules, and lysosomes. We have examined the lysosomal targeting information present within the cytoplasmic tail by site-directed mutagenesis of horseradish peroxidase-P-selectin chimeras followed by transient transfection in H.Ep.2 cells. Assaying lysosomal targeting by subcellular fractionation as well as intracellular proteolysis, we have discovered a novel lysosomal targeting signal, KCPL, located within the C1 domain of the cytoplasmic tail. Alanine substitution of this tetrapeptide reduced lysosomal targeting to the level of a tailless horseradish peroxidase-P-selectin chimera, which was previously found to be deficient in both internalization and delivery to lysosomes. A proline residue within this lysosomal targeting signal makes a major contribution to the efficiency of lysosomal targeting. A diaminobenzidine density shift procedure established that chimeras with an inactivated KCPL sequence are present within transferrin-positive compartments. Such a mutant also displays an increased level of expression at the plasma membrane. Our results indicate that the sequence KCPL within the cytoplasmic tail of P-selectin is a structural element that mediates sorting from endosomes to lysosomes.  相似文献   

3.
The viability of boron neutron capture therapy depends on the development of tumor-targeting agents that contain large numbers of boron-10 (10B) atoms and are readily taken up by cells. Here we report on the selective uptake of homogeneous fluorescein-labeled nido-carboranyl oligomeric phosphate diesters (nido-OPDs) by the cell nucleus and their long-term retention after their delivery into the cytoplasm of TC7 cells by microinjection. All nido-OPDs accumulated in the cell nucleus within 2 h after microinjection. However, nido-OPDs in which the carborane cage was located on a side chain attached to the oligomeric backbone were redistributed between both the cytoplasm and nucleus after 24 h of incubation, whereas nido-OPDs in which the carborane cage was located along the oligomeric backbone remained primarily in the nucleus. Furthermore, cell-free incubation of digitonin-permeabilized TC7 cells with the nido-OPDs resulted in nuclear accumulation of the compounds, thus corroborating the microinjection studies. Our observation of fluorescence primarily located in the cell nucleus indicates that nuclear-specific uptake of sufficient amounts of 10B for effective boron neutron capture therapy ( approximately 10(8)-10(9) 10B atoms/tumor cell) via nido-OPDs is achievable.  相似文献   

4.
At slightly acidic or even neutral pH, oligodeoxynucleotides that include a stretch of cytidines have been shown to form a tetrameric structure in which two parallel-stranded duplexes have their hemiprotonated C.C+base pairs face to face and fully intercalated, in a so-called i-motif. Cytosine-rich pyrimidine oligodeoxynucleotides can form an intramolecular i-motif. We have studied the ability of several DNA analogs to fold into this structure. Evidence for folding was provided by thermal denaturation. We have shown that phosphorothioate and phosphodiester oligodeoxynucleotides, but not methylphosphonate or PNA oligomers, may form the i-motif. Four different PS oligodeoxynucleotides were compared with their PO counterparts. In all cases, the melting temperature (Tm) of the phosphorothioate oligomer was equal or slightly inferior (by 2-3 degreesC) to the Tmof the natural oligodeoxynucleotide. For long oligodeoxynucleotides, a small change of pH leads to a completely different melting profile: the curves are reversible at pH 6.4 or lower, and a hysteresis is obtained at pH 6.8 or higher; cooling and heating curves were not superimposed, allowing us to determine the rate constants of association (kon) and dissociation (koff) as a function of the temperature: these rate constants give linear Arrhenius plots, in agreement with the prediction of the two-state model of association-dissociation. The activation energy Eonis strongly negative and, at neutral pH, the phosphorothioate associates and dissociates nine times faster than the phosphodiester oligodeoxynucleotide of identical sequence.  相似文献   

5.
In this paper we demonstrate the power of preparative free-flow electrophoresis (FFE) for the study of endocytosis by African trypanosomes. Endocytosis of extracellular macromolecules by these parasites occurs through a specialized region of the parasite called the flagella pocket. The uptake of fluid phase markers such as horseradish peroxidase (HRP) into the various compartments of the endocytic pathway of bloodstream forms of Trypanosoma brucei brucei was manipulated by regulating the external environment (e.g., by altering the temperature of incubation). The various subcellular compartments were then separated by free-flow electrophoresis (FFE) or isopycnic density gradient centrifugation and analyzed for marker uptake. At low temperatures, HRP was found predominantly in the flagellar pocket. Increasing the temperature resulted in a time-dependent uptake of HRP into more positively charged endosomal fractions. However, little HRP activity was detected in lysosomal compartments, suggesting that either HRP had not yet entered the lysosome or was degraded immediately upon entry. Through the use of FFE we were able to identify and analyze compartments of the endosomal pathway that were not possible to identify by density gradient centrifugation alone. Although the differences in FFE separation of the endocytic compartments as seen in HRP uptake were striking, the minor changes seen within the lysosomal system were more subtle, as depicted in the protease profiles. In conclusion, we show that preparative FFE is a powerful technique for the analysis and separation of flagellar pocket-derived membranes from other endosomal and lysosomal compartments of African trypanosomes.  相似文献   

6.
Salmonella species are intracellular facultative pathogens which survive within phagocytic cells such as macrophages and proliferate inside vacuoles of epithelial cells. Early reports suggested that the capacity for surviving within macrophages was due to the inhibitory effect on the phagosome-lysosome fusion event induced by intracellular Salmonella. However, recent cell biology data, obtained both with phagocytic and epithelial cells, have shown that Salmonella-containing phagosomes have large amounts of lysosomal membrane glycoproteins (lgp), major components of the lysosomal membrane. This apparent discrepancy has partly been clarified at least in epithelial cells: the Salmonella-containing phagosome fuses with lgp-rich compartment different from the classical mature lysosome, as they do not contain certain lysosomal enzymes and are not connected with the endocytic route. Therefore, Salmonella seems to use an alternative strategy not merely based on the inhibition of phagosome-lysosome fusion event. This strategy essentially involves acquisition of only certain lysosomal components to form a specialized phagosomal compartment in which to survive or proliferate intracellularly. These observations have also exemplified the potential use of intracellular bacterial pathogens as biological probes to understand normal biological aspects of the eukaryotic cell. The intracellular lifestyle of Salmonella will undoubtedly provide new insights into the process of lysosome biogenesis.  相似文献   

7.
Receptor-mediated endocytosis of circulating collagen is a major physiological scavenger function of the liver endothelial cell and an important catabolic event in the complete turnover of this abundant connective tissue protein. In the present study, transport of collagen through the endocytic pathway was investigated in cultured liver endothelial cells. Collagen conjugated to fluorescein isothiocyanate, to allow detection of the ligand by fluorescence and immunoelectron microscopy, was found sequentially in three different organelles that compose the basic degradative endocytic pathway of eukaryotic cells: early endosomes, late endosomes, and terminal lysosomes. Early endosomes were identified as vesicles positive for early endosome antigen 1 (EEA1). Late endosomes were distinguished as structures positive for the late endosomal/lysosomal marker rat lysosomal membrane glycoprotein 120, but negative for EEA1 and lysosomally targeted BSA-gold. Lysosomes were defined by their content of BSA-gold, injected 24 hours before isolation of cells. Coated pits and coated vesicles mediated an extremely rapid internalization. Shortly after internalization and during the first 20 minutes, ligand was found in early endosomes. From 20 minutes on, ligand started to appear in late endosomes (23%), and by 2 hours the transfer was largely complete (82.5%). Only 2.5% of ligand was transferred to the lysosomes after 2 hours, and this number slowly increased to 21% and 53% after 6 and 16 hours, respectively. We conclude that 1) EEA1 is a useful marker for tracing early events of endocytosis in liver endothelial cells; 2) in contrast to the rapid internalization, transit of internalized ligand through early sorting endosomes generally takes from 20 minutes to 2 hours; and 3) exit from the late endosomes is very slow, requiring several hours.  相似文献   

8.
Antisense oligodeoxynucleotides (ODNS) can be used to specifically inhibit hepatitis C viral gene expression. Due to its high degree of conservation and its important function as internal ribosomal entry site, the 5'-non-coding region of the hepatitis C virus has been the most effective target to inhibit translation so far. Inhibition of luciferase reporter gene expression of up to 96 +/- 2% has been achieved. Modifications of ODNs like phosphorothioate, methylphosphonate or benzylphosphonate modification of terminal or intramolecular internucleotide phosphates lead to altered lipophilicity and binding stability to its RNA target and resistance against serum nucleases. The mode of action of ODNs is mainly dependent on an efficient induction of RNase H activity. The uptake of ODNs occurs via receptor-mediated or absorptive and fluid-phase endocytosis. After release from the endosomes, ODNs may exert their effects by interaction with cytosolic or nuclear structures. Side effects can occur when this interaction affects intra- or extracellular targets essential for biological cell function. If these problems can be solved, antisense technology has the potential for future therapy of human disease.  相似文献   

9.
Intercellular adhesion molecule 1 and the low-density lipoprotein receptor are used for cell entry by major and minor receptor group human rhinoviruses (HRVs), respectively. Whereas minor-group viruses, exemplified by HRV2, transfer their genomic RNA to the cytoplasm through a pore in the endosomal membrane (E. Prchla, C. Plank, E. Wagner, D. Blaas, and R. Fuchs, J. Cell Biol. 131:111-123, 1995), the mechanism of in vivo uncoating of major-group HRVs has not been elucidated so far. Using free-flow electrophoresis, we performed a comparative analysis of cell entry by HRV2 and the major group rhinovirus HRV14. Here we demonstrate that this technique allows the separation of free viral particles from those associated with early endosomes, late endosomes, and plasma membranes. Upon free-flow electrophoretic separation of microsomes, HRV14 was recovered from endosomes under conditions which prevent uncoating, whereas the proportion of free viral particles increased with time under conditions which promote uncoating. The remaining virus eluted within numerous fractions corresponding to membraneous material, with no clear endosomal peaks being discernible. This suggests that uncoating of HRV14 results in lysis of the endosomal membrane and release of subviral 135S and 80S particles into the cytoplasm.  相似文献   

10.
We have determined the time course, the spatial spread in brain tissue, and the intracellular distribution of biotin- and fluorescein-labeled phosphorothioate oligodeoxynucleotides (ODNs) following single injections into the rat striatum or the lateral ventricle. These time and space parameters were correlated with the ability of c-fos phosphorothioate antisense ODNs to suppress the induction of Fos protein by cocaine. A rapid and dose-dependent tissue penetration of labeled ODNs was observed following either intrastriatal or intraventricular injections of a constant sample volume. Inspection of tissue sections by confocal microscopy uncovered a distinct change in the intracellular disposition of labeled ODNs during the 24 h post-injection period. At 1, 6 and 12 h, the vast majority of the fluorescent signal was confined to the interstitial spaces throughout the zone penetrated by ODNs. Neuronal nuclei displayed faint labeling along the outer portion of the nucleus at 1 and 6 h post-injection. At these time-points, ODNs were not detected in the cytoplasm. By 16 h, ODNs were barely detectable in the extracellular space and absent from neuronal nuclei. Instead, ODNs were seen in large cytoplasmic granules of neurons throughout the tissue zone penetrated by the ODNs. Experiments with intrastriatal injections of antisense ODNs to c-fos mRNA revealed Fos suppression between 3 and 12 h, but not at 16 and 24 h. This combined analysis has revealed that (1) restricted tissue penetration by ODNs limits their antisense effects on protein expression, and (2) depletion of extracellular ODNs and sequestration of c-fos antisense ODNs into large intracellular granules coincides with the loss of their biological activity.  相似文献   

11.
Bloodstream forms of Trypanosoma brucei rhodesiense take up macromolecules in endocytic vesicles that form in a large coated pit called the flagellar pocket. Glycoproteins that bind to ricin are concentrated in the flagellar pocket and in intracellular vesicles. We purified Triton X-100-soluble ricin-binding glycoproteins by lectin affinity chromatography and immunized mice to generate hybridomas. Monoclonal antibody produced by the CB1 hybridoma recognized heterodisperse trypanosome components migrating with M(r) 84-140 kDa in immunoblots. CB1 binding was specifically inhibited by lactose. The CB1-reactive material was purified by sequential affinity chromatography on ricin- and CB1-Sepharose. N-Glycosidase F, but not endoglycosidase H, digestion destroyed CB1-reactivity of purified material. This suggests that N-linked oligosaccharides contribute to the CB1 epitope. Glycosidase digestion of biosynthetically radiomethionine-labeled, affinity purified, CB1-reactive material yielded two radiolabeled polypeptides, p57 and p42. Thirteen methionyl peptides were resolved in one-dimensional peptide maps of V8 protease digests of p57; p42 had 10 methionyl peptides with mobilities indistinguishable from those of peptides of p57. This suggests that p57 and p42 are closely related. In cryoimmunoelectron microscopy studies CB1 specifically labeled the interior surface of tubular and vesicular membranes located between the nucleus and the flagellar pocket. These membranes were morphologically identical to structures that have been previously identified as trans Golgi, lysosomal, and endosomal elements. In double-labeling studies endocytosed serum albumen-gold complexes were found in the lumen of vesicles that had CB1-reactive material in their membranes. This provides direct evidence that vesicles containing high levels of CB1-reactive material are part of the lysosome/endosomal system. Some CB1-reactive material was also detected in the flagellar pocket by cryoimmunoelectron microscopy. Corrolated flow cytofluorimetry and immunofluorescence analysis showed that 85-96% of the total CB1-reactive material was intracellular and inaccessible to antibody in living cells. The 4-15% of the total CB1-reactive material accessible to antibody in living cells was localized in the flagellar pocket. Bloodstream forms of Trypanosoma brucei brucei, Trypanosoma brucei gambiense, and T.b. rhodesiense all expressed the CB1 epitope. However, expression of this epitope is developmentally regulated during the parasite life cycle, for no CB1-reactive material was detected in procyclic forms. The trypanosome proteins detected by CB1 show some similarities to vertebrate lysosomal and endosomal membrane proteins.  相似文献   

12.
Advanced glycation end-products (AGEs) are assumed to play a major role in the genesis of diabetic nephropathy and other diabetic complications. We studied the potential effect of AGEs on protein turnover and lysosomal proteinase activities in LLC-PK1 cells, a pig kidney proximal tubules cell line. Advanced glycated bovine serum albumin (AGE-BSA) was used as a model of AGEs and its action was compared to that of nonglycated BSA. AGE-BSA but not BSA (50 micromol/l) induced a significant increase in cell volume (BSA: 4870.6 +/- 74.8 fl, AGE-BSA: 5718.0 +/- 20.7 fl, p<0.01). Protein degradation rate was decreased by 13.8% after 48 hrs. incubation with AGE-BSA (p<0.01) while protein synthesis increased by 19,1%, (p<0.01). After incubation with AGE-BSA but not BSA activities of lysosomal cathepsins (B, L+B and H) decreased in a time- and dose-dependent fashion. This decline was neither caused by a shift in lysosomal pH outside the optimal range for cathepsins, nor by a direct inhibitory effect of AGEs modified proteins or peptides but most probably by inhibition of cathepsin B expression as measured by RT-PCR. It is supposed that impaired protease activities participated in decreased protein breakdown and cell enlargement. For the first time our data provide the evidence that AGEs induce hypertrophy of LLC-PK1 cells due to decreased protein breakdown resulting from reduced lysosomal proteinase activities with a concomitant stimulation of protein synthesis.  相似文献   

13.
Stimulation of CD4(+) helper T lymphocytes by antigen-presenting cells requires the degradation of exogenous antigens into antigenic peptides which associate with major histocompatibility complex (MHC) class II molecules in endosomal or lysosomal compartments. B lymphocytes mediate efficient antigen presentation first by capturing soluble antigens through clonally distributed antigen receptors (BCRs), composed of membrane immunoglobulin (Ig) associated with Ig-alpha/Ig-beta heterodimers which, second, target antigens to MHC class II-containing compartments. We report that antigen internalization and antigen targeting through the BCR or its Ig-alpha-associated subunit to newly synthesized class II lead to the presentation of a large spectrum of T cell epitopes, including some cryptic T cell epitopes. To further characterize the intracellular mechanisms of BCR-mediated antigen presentation, we used two complementary experimental approaches: mutational analysis of the Ig-alpha cytoplasmic tail, and overexpression in B cells of dominant negative syk mutants. Thus, we found that the syk tyrosine kinase, an effector of the BCR signal transduction pathway, is involved in the presentation of peptide- MHC class II complexes through antigen targeting by BCR subunits.  相似文献   

14.
Ascorbic acid can recycle alpha-tocopherol from the tocopheroxyl free radical in lipid bilayers and in micelles, but such recycling has not been demonstrated to occur across cell membranes. In this work the ability of intracellular ascorbate to protect and to recycle alpha-tocopherol in intact human erythrocytes and erythrocyte ghosts was investigated. In erythrocytes that were 80% depleted of intracellular ascorbate by treatment with the nitroxide Tempol, both 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) and ferricyanide oxidized alpha-tocopherol to a greater extent than in cells not depleted of ascorbate. In contrast, in erythrocytes in which the intracellular ascorbate concentration had been increased by loading with dehydroascorbate, loss of alpha-tocopherol was less with both oxidants than in control cells. Protection against AAPH-induced oxidation of alpha-tocopherol was not prevented by extracellular ascorbate oxidase, indicating that the protection was due to intracellular and not to extracellular ascorbate. Incubation of erythrocytes with lecithin liposomes also generated an oxidant stress, which caused lipid peroxidation in the liposomes and depleted erythrocyte alpha-tocopherol, leading to hemolysis. Ascorbate loading of the erythrocytes delayed liposome oxidation and decreased loss of alpha-tocopherol from both cells and from alpha-tocopherol-loaded liposomes. When erythrocyte ghosts were resealed to contain ascorbate and challenged with free radicals generated by AAPH outside the ghosts, intravesicular ascorbate was totally depleted over 1 h of incubation, whereas alpha-tocopherol decreased only after ascorbate was substantially oxidized. These results suggest that ascorbate within the erythrocyte protects alpha-tocopherol in the cell membrane by a direct recycling mechanism.  相似文献   

15.
Amyloid precursor protein (APP) is a secretory membrane-bound protein that undergoes restrictive proteolysis and degradation with a short life span in the constitutive secretory pathway or in the endosomal/lysosomal compartment. The degradation machinery, including cellular trafficking and the restrictive cleavage of APP, is poorly understood. To gain further insight into the intracellular degradation mechanism of APP, we searched for effector proteins that interact with APP. We found that a cytosolic molecular chaperon, Hsc73, effectively interacts with the cytoplasmic domain of APP in the presence of proteasome inhibitors. Hsc73 binds to the cytoplasmic domain near the post-transmembrane region of APP and not to the KFERQ-related sequence, KFFEQ, at the C-terminal tail that is assumed to be the selective targeting signal for lysosomal proteolysis. The amounts of Hsc73 that bind to several APP species such as those found in pathological Familial Alzheimer's disease (FAD), Swedish, or Dutch type mutation, are almost identical, suggesting that an abnormal conformation around the secretory cleavage site or a pathological imbalance in APP processing are not irrelevant to the efficiency of Hsc73 binding.  相似文献   

16.
In the present work we have continued our studies in the photobiological properties of the 2,7,12,17-tetraphenylporphycene (TPPo). In particular, the uptake, the subcellular localization and the photoeffects on two cytoskeletal elements (actin, microfilaments and cytokeratin intermediate filaments) of HeLa cells have been analyzed. The uptake kinetics of TPPo, determined by fluorescence spectroscopy, was initially very rapid, reaching saturation at approximately 6 h of incubation. This porphycene tends to be accumulated mainly in rounded particles distributed throughout the cytoplasm. The morphological comparison of the localization pattern of TPPo and those of acridine orange and rhodamine 123, which are fluorescence markers for lysosomes and mitochondria respectively, allowed us to confirm that this porphycene is mainly accumulated in lysosomal organelles. The results obtained after treatment with TPPo and red light indicated that this compound is very effective in mediating the photodestruction of lysosomes. The photosensitizing effects on the cytoskeletal elements studied depended on both the irradiation time and the elapsed time after treatment. The implications of damage to lysosomes and actin and cytokeratin filaments on the process of cell death is discussed.  相似文献   

17.
BACKGROUND: Ciprofloxacin (CFLX) is a fluoroquinolone antibiotic with a broad antimicrobial spectrum. This study was performed to examine the retinal toxicity of free and liposome-incorporated CFLX in rabbit eyes after intravitreal injection. MATERIALS AND METHODS: Free CFLX in doses of 100, 250, 500, 1,000 and 2,000 microg was injected into the midvitreous of rabbit eyes (n = 28). To prolong the intravitreal antibacterial level, CFLX was incorporated into multilamellar liposomes: 0.1 ml of this suspension ( wedge 273.6 microg CFLX) was injected into the midvitreous of a second group of rabbit eyes (n = 6). The other eye served as a control and received normal saline solution or empty liposomes, respectively. Before injection and at the end of follow-up an electroretinogram (ERG) was obtained. After a follow-up of 1, 14 and 28 days the animals were perfused with glutaraldehyde and the eyes were examined by light and transmission electron microscopy. RESULTS: Significant reduction of the ERG was observed after 2,000 microg free CFLX in 4 out of 6 eyes after 14 days. Fourteen days after injection of 2,000 microg CFLX the central retina showed pigmentary changes in 4 out of 6 eyes. In the second group the ERG as well as the histologic studies did not reveal any pathologic changes after injection of liposome-incorporated CFLX compared to the control eyes. CONCLUSION: In therapeutic doses of 100-500 microg, free CFLX does not have retinal toxicity in rabbit eyes. No retinal toxicity was observed after intravitreal injection of liposome-incorporated CFLX.  相似文献   

18.
It was found that the absorbance and fluorescence of green fluorescent protein (GFP) mutants are strongly pH dependent in aqueous solutions and intracellular compartments in living cells. pH titrations of purified recombinant GFP mutants indicated >10-fold reversible changes in absorbance and fluorescence with pKa values of 6.0 (GFP-F64L/S65T), 5.9 (S65T), 6.1 (Y66H), and 4.8 (T203I) with apparent Hill coefficients of 0.7 for Y66H and approximately 1 for the other proteins. For GFP-S65T in aqueous solution in the pH range 5-8, the fluorescence spectral shape, lifetime (2.8 ns), and circular dichroic spectra were pH independent, and fluorescence responded reversibly to a pH change in <1 ms. At lower pH, the fluorescence response was slowed and not completely reversed. These findings suggest that GFP pH sensitivity involves simple protonation events at a pH of >5, but both protonation and conformational changes at lower pH. To evaluate GFP as an intracellular pH indicator, CHO and LLC-PK1 cells were transfected with cDNAs that targeted GFP-F64L/S65T to cytoplasm, mitochondria, Golgi, and endoplasmic reticulum. Calibration procedures were developed to determine the pH dependence of intracellular GFP fluorescence utilizing ionophore combinations (nigericin and CCCP) or digitonin. The pH sensitivity of GFP-F64L/S65T in cytoplasm and organelles was similar to that of purified GFP-F64L/S65T in saline. NH4Cl pulse experiments indicated that intracellular GFP fluorescence responds very rapidly to a pH change. Applications of intracellular GFP were demonstrated, including cytoplasmic and organellar pH measurement, pH regulation, and response of mitochondrial pH to protonophores. The results establish the application of GFP as a targetable, noninvasive indicator of intracellular pH.  相似文献   

19.
The prevailing opinion on lysosomal endurance is that, as long as the cells are still alive, these organelles are generally quite stable and, thus, do not induce cell damage by leaking their numerous powerful hydrolytic enzymes to the cytosol. We suggest that this opinion is basically wrong and consider that many lysosomes are quite vulnerable, especially to oxidative stress. Moreover, we suggest that cellular degeneration, including apoptosis as well as necrosis, follows upon lysosomal disruption. We have found differing stability of lysosomal membranes to oxidative stress, not only among different cell types, but also between cells of the same type and between lysosomes of individual cells. We suggest that cellular resistance to oxidative stress is mainly a function of three parameters: (i) the capacity to degrade hydrogen peroxide before it reaches, and may diffuse into, the acidic vacuolar compartment; (ii) the resistance to reactive oxygen species of lysosomal membranes; and (iii) the intralysosomal amounts of redox-active, low molecular weight iron. Iron-catalysed intralysosomal reactions, if pronounced enough, result in peroxidation and destabilization of the lysosomal membrane. Owing to differences in the cellular synthesis of hydrogen peroxide-degrading enzymes, degree of autophagocytotic degradation of iron-containing metalloproteins, lysosomal localization within the cytoplasm and intralysosomal iron chelation, the above three parameters may vary between both different and similar cells and between lysosomes of individual cells as well, explaining their observed variability with respect to resistance against oxidative stress.  相似文献   

20.
Brucella abortus is an intracellular pathogen that replicates within a membrane-bounded compartment. In this study, we have examined the intracellular pathway of the virulent B. abortus strain 2308 (S2308) and the attenuated strain 19 (S19) in HeLa cells. At 10 min after inoculation, both bacterial strains are transiently detected in phagosomes characterized by the presence of early endosomal markers such as the early endosomal antigen 1. At approximately 1 h postinoculation, bacteria are located within a compartment positive for the lysosome-associated membrane proteins (LAMPs) and the endoplasmic reticulum (ER) marker sec61beta but negative for the mannose 6-phosphate receptors and cathepsin D. Interestingly, this compartment is also positive for the autophagosomal marker monodansylcadaverin, suggesting that S2308 and S19 are located in autophagic vacuoles. At 24 h after inoculation, attenuated S19 is degraded in lysosomes, while virulent S2308 multiplies within a LAMP- and cathepsin D-negative but sec61beta- and protein disulfide isomerase-positive compartment. Furthermore, treatment of infected cells with the pore-forming toxin aerolysin from Aeromonas hydrophila causes vacuolation of the bacterial replication compartment. These results are compatible with the hypothesis that pathogenic B. abortus exploits the autophagic machinery of HeLa cells to establish an intracellular niche favorable for its replication within the ER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号