共查询到19条相似文献,搜索用时 54 毫秒
1.
动态加权模糊核聚类算法 总被引:2,自引:0,他引:2
为了克服噪声特征向量对聚类的影响,充分考虑各特征向量对聚类结果的贡献度的不同,运用mercer核将待聚类的数据映射到高维空间,提出了一种新的动态加权模糊核聚类算法.该算法运用动态加权,自动消弱噪声特征向量在分类中的作用,在对数据没有任何先验信息的情况下,不仅能够准确划分线性数据,而且能够做到非线性划分非团状数据.仿真和实际数据分类结果表明,数据中的噪声对分类结果影响较小,该算法具有很高的实用性. 相似文献
2.
3.
《计算机应用与软件》2017,(4)
受益于独有的可能性聚类特性,较之传统FCM、k-means等基于类均值方法,PCM拥有更佳的聚类效果和抗噪性能。但PCM为传统单视角聚类算法,其在面对新兴多视角聚类场景时,往往效果欠佳。为解决此问题,基于PCM,提出一种新型的称为模糊加权多视角可能性聚类WCo-PCM算法。WCo-PCM显著优点在于其具备对各视角的自适应加权。有关UCI数据集的实验结果表明该算法较传统聚类算法及多视角聚类算法更具抗干扰性,有着更佳的聚类性能。 相似文献
4.
5.
为解决传统可能性聚类算法(PCM)无法满足多视角学习场景聚类的实际问题,并进一步考虑到现有多视角聚类算法尚未重视的视角权重及视角内特征权重优化问题,本文提出一种新的具备最佳视角及最优特征划分能力的多视角模糊双加权可能性聚类算法(MV-FDW-PCM)。该算法将基于传统的PCM算法,给出了详细的多视角聚类学习框架使得PCM算法具备多视角聚类能力,进而通过引入视角间模糊加权机制及视角内属性模糊加权机制解决视角间权重及视角内特征权重优化问题。实验结果表明,所提的MV-FDW-PCM算法在面对多视角聚类问题时较以往算法具有更佳的聚类效果。 相似文献
6.
模糊C均值聚类算法(FCM)是一种流行的聚类算法,在许多工程领域有着广泛的应用.密度加权的模糊C均值算法(Density Weighted FCM)是对传统FCM的一种改进,它可以很好的解决FCM对噪声敏感的问题.但是DWFCM与FCM都没有解决聚类结果很大程度上依赖初始聚类中心的选择好坏的问题.提出一种基于最近邻居节点对密度的FCM改进算法Improved-DWFCM,通过最近邻居节点估计节点密度的方法解决聚类结果对初始簇中心依赖的问题.仿真结果表明这种算法选择出来的初始聚类中心与最终结果的簇中心非常接近,大大提高了算法收敛的速度以及聚类的效果. 相似文献
7.
传统的聚类融合方法通过融合所有成员实现融合,无法彻底消除劣质聚类成员对融合质量的影响,而从聚类成员的选择和加权两方面进行聚类融合,即先采用两两融合技术代替融合所有聚类结果进行聚类成员选择,然后进行基于属性的聚类成员加权,在理论上具有更好优越性。通过对真实数据和模拟数据的实验发现,该算法能有效处理聚类成员的质量差异,比传统聚类融合能得到更好的聚类结果,具有较好可扩展性。 相似文献
8.
协同聚类是对数据矩阵的行和列两个方向同时进行聚类的一类算法。本文将双层加权的思想引入协同聚类,提出了一种双层子空间加权协同聚类算法(TLWCC)。TLWCC对聚类块(co-cluster)加一层权重,对行和列再加一层权重,并且算法在迭代过程中自动计算块、行和列这三组权重。TLWCC考虑不同的块、行和列与相应块、行和列中心的距离,距离越大,认为其噪声越强,就给予小权重;反之噪声越弱,给予大权重。通过给噪声信息小权重,TLWCC能有效地降低噪声信息带来的干扰,提高聚类效果。本文通过四组实验展示TLWCC算法识别噪声信息的能力、参数选取对算法聚类结果的影响程度,算法的聚类性能和时间性能。 相似文献
9.
10.
11.
12.
13.
We present in this paper a fuzzy clustering algorithm which can handle spatially constraint problems often encountered in pattern recognition. The proposed method is based on the notions of hyperplanes, the fuzzy c-means, and spatial constraints. By adding a spatial regularizer into the fuzzy hyperplane-based objective function, the proposed method can take into account additionally important information of inherently spatial data. Experimental results have demonstrated that the proposed algorithm achieves superior results to some other popular fuzzy clustering models, and has potential for cluster analysis in spatial domain. 相似文献
14.
提出一种基于动态层次分析的自适应多目标粒子群优化算法,利用模糊一致矩阵层次分析法选取全局最优粒子,保证进化方向的合理性和客观性。在进化过程中对种群状态进行客观度量,自适应更新种群的权重和学习因子等重要参数,使种群进化具有自我调节能力。将提出的算法分别应用于标准多目标测试函数、PID控制器参数优化和甲醇转化烃类物质的工业过程模型辨识中,通过与其他算法的对比说明了所提出算法的有效性和可行性。 相似文献
15.
16.
为解决模糊C-均值(FCM)聚类算法在大数据量中存在的计算量大、运行时间过长的问题,提出了一种改进方法:先用多次随机取样聚类得到的类中心作为FCM算法的初始类中心,以减少FCM算法收敛所需的迭代次数;接着通过数据约减,压缩参与迭代运算的数据集,减少每次迭代过程的运算时间。该方法使FCM算法运算速度大大提高,且不影响算法的聚类效果。 相似文献
17.
把自适应的策略与传统的模糊C均值聚类算法结合起来,形成新的模糊聚类算法。在不影响收敛速度的情况下,它能够很好解决局部最优以及对初始值敏感的问题。以UCI机器学习数据库中的两组数据集为研究对象,实验结果表明,它的精确度与自适应免疫聚类算法相当,能够得到准确的簇的数目,并且它的收敛速度更快,这对于如今网络数据的高速变化来说,该方法显得更为重要。 相似文献
18.
为了在聚类数不确定的情况下实现聚类分析,通过借鉴生物免疫系统中的克隆选择原理并结合聚类有效性分析,提出一种免疫模糊动态聚类算法.本算法不但可以根据数据自动确定聚类类目及中心位置,而且克服了传统聚类算法容易陷入局部极小值,对初始值敏感的缺点.仿真实验结果表明了本算法的有效性. 相似文献
19.
针对现有模糊聚类方法仅仅是对已有数据点的聚类的不足,提出了在已有数据集的基础上找到新的一类集群的聚类方法 CFCM。该算法在FCM算法的基础上,通过引入观测点P作为聚类的先验知识,来大致确定未知集群的聚类中心,定义了权重系数λ来限定观测点对新的一类聚类中心形成的影响程度。人造数据集和UCI真实数据集的实验结果表明,该算法不仅对已知数据点有较好的聚类效果,并且可以在观测点P的作用下在特定区域创造出新的一类无已知数据点的集群中心点的大致位置,因而在实际中有潜在应用价值。 相似文献