首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用三维光弹性实验应力分析和有限元计算两种方法,在拉拔载荷和热残余应力联合作用下,对单丝拔出树脂基复合材料三维冻结切片界面剪应力进行了研究。实验结果和计算表明,在单纤维与基体界面的埋入端及埋入末端附近出现界面残余剪应力的极值;力、热载荷作用下纤维界面剪应力呈抛物线分布,单丝埋入端附近是应力的主要传递区域,最先达到危险应力,出现界面脱胶破坏,然后剪应力沿纤维埋入长度由纤维埋入端附近向埋入末端逐渐传递;界面热残余应力对界面剪应力的影响是使纤维埋入末端应力集中程度降低,使界面剪应力最大值增大。   相似文献   

2.
A Monte-Carlo simulation technique based on a finite-element method has been developed in order to clarify the effect of interfacial shear strength on the tensile strength and reliability of fibrous composites. In the simulation a boron/epoxy monolayer composite was modelled, and five hundred simulations were carried out for various interfacial shear strengths. The interfacial shear strength value which raised the average strength of the composite corresponded approximately to the value which reduced the coefficient of variation. This implies the existence of an optimum value of interfacial shear strength which can increase the strength and reliability. The simulated strength and reliability were closely related to the degree and type of damage around a fiber break. That is to say, large-scale debonding caused by a weak interfacial bond and matrix cracking caused by a strong bond reduced the number of fiber breaks accumulated up to the maximum stress, and decreased the strength and reliability. On the other hand, small-scale debonding promoted comparatively the cumulative effect of fiber breaks and played a key role in increasing the composite strength and reliability.  相似文献   

3.
Interfacial debonding between concrete and fiber reinforced polymer (FRP) is investigated through integrating experiments and computations. An experimental program is designed to evaluate interfacial fracture parameters of mode-I through cutting and bonding specimens with an FRP sheet. The evaluated fracture parameters, i.e. the fracture energy and the bonding strength, are confirmed by predicting FRP debonding failure with the cohesive zone modeling approach. In the cohesive zone model, a traction-separation relation for FRP debonding is proposed with a shape index while providing various initial descending slopes. Computational results of the cohesive zone model agree well with three-point bending test results for both FRP debonding and plain concrete fracture. Furthermore, both experimental and computational results demonstrate that the fracture energy and the cohesive strength are essential fracture parameters for the prediction of FRP debonding behavior.  相似文献   

4.
We performed a numerical simulation of a time-dependent interfacial failure accompanied by a fiber failure, and examined their evolution under shear and compressive loads in single-fiber composites. The compressive load on the interface consists of Poisson’s contraction for matrix resin subjected to longitudinal tensile load. As time progresses, compressive stress at the interface in the fiber radial direction relaxes under the constant longitudinal tensile strain condition for the specimen, directly causing the relaxation of the interface frictional stress. This relaxation facilitates the failure of the interface. In this analysis, a specific criterion for interface failure is applied; apparent interfacial shear strength is enhanced by compressive stress, which is referred as quasi-parabolic criterion in the present study. The results of the stress recovery profile around the fiber failure and the interfacial debonding length as a function of time simulated by the finite element analysis employing the criterion are very similar to experimental results obtained using micro-Raman spectroscopy.  相似文献   

5.
This paper attempts to quantify the fracture properties (strength and toughness) of the fiber–matrix interface in composites, using the fragmentation process and debonding growth for HI-Nicalon™ SiC single-fiber and T300 carbon single-fiber epoxy (Bisphenol-A type epoxy resin with triethylenetetramine (TETA) as curing agent) composite systems. This method is based on the numerical modeling for the microscopic damage and fragmentation process in single-fiber composite (SFC) tests, with a cohesive zone model (CZM). For the HI-Nicalon™ SiC single-fiber epoxy composite in which the major damage near a fiber break is interfacial debonding, interface properties were reasonably determined as (TII,max, GIIc) = (75 MPa, 200 J/m2). In contrast, for T300 carbon single-fiber epoxy composite, we could not determine unique interfacial properties, since the variation of the cohesive parameters hardly affects the microscopic damage process due to the transition to the damage pattern dominated by matrix cracking.  相似文献   

6.
通过单纤维拔出实验和单轴拉伸实验, 测定了形状记忆合金(SMA)增强树脂基复合材料的界面脱粘剪切强度和单向随机分布SMA短纤维增强复合材料的拉伸强度。根据蒙特卡罗法和边界条件控制方程, 编写了适于软件调用的单向随机分布短纤维增强复合材料的APDL语言生成程序, 建立数值模拟模型。基于指数型内聚力模型, 对SMA纤维与环氧树脂基体界面分离(即界面脱粘)过程进行了有限元模拟。结果表明: 相同纤维体积分数下, 随着纤维长细比的减小, 复合材料整体弹性模量逐渐降低; 温度驱使SMA纤维弹性模量发生变化, 可以有效提高复合材料整体弹性模量。  相似文献   

7.
《Composites Science and Technology》2007,67(11-12):2271-2281
The chip formation mechanism in orthogonal machining of unidirectional glass fiber reinforced polymer (UD-GFRP) composites is simulated using quasi-static analysis. Dynamic explicit finite element method with mass scaling is used for analysis to speed up the solution. A two-dimensional, two-phase micromechanical model with elastic fiber, elasto-plastic matrix and a cohesive zone is used to simulate the debonding interface between the fiber and the matrix. The elements of the fiber are failed once the maximum principal stress reaches the tensile strength and the matrix elastic modulus is degraded once the ultimate strength is reached. The effect of fiber orientation, tool parameters and operating conditions on fiber and matrix failure and chip size is also investigated. The degradation of the matrix adjacent to the fiber occurs first, followed by failure of the fiber at its rear side. The extent of sub-surface damage due to matrix cracking and interfacial debonding is also determined.  相似文献   

8.
An improved analysis considering the effects of interface roughness and thermal residual stresses in both radial and axial directions is developed for the single fiber push-out test. The roughness of the interface, which has a significant effect on the fiber sliding behavior, is expressed by a Fourier series expansion that has good convergence and can handle general shapes of roughness. The interfacial shear stress that plays an important role in interfacial debonding is very much affected by the axial thermal residual stress in the bonded region, which can induce a two-way debonding mechanism. It has been found that both residual stress and interface roughness have pronounced effects on the stress transfer across the interface and interfacial debonding behaviour.  相似文献   

9.
为了研究形状记忆合金(SMA)丝增强环氧树脂复合材料的界面粘结行为,首先通过单纤维拔出试验测定了SMA/环氧树脂界面的粘结强度,重点考察了埋入深度对界面极限粘结强度及其拔出行为的影响。然后,结合ABAQUS有限元分析方法,利用基于表面内聚力行为的单元对SMA丝拔出过程中应力分布随拔出时间的变化关系进行了模拟。最后,针对SMA/环氧树脂复合材料界面粘结强度较弱的缺陷,提出了利用纳米SiO2改性SMA丝表面提升材料界面粘结强度的方法,并通过拔出试验进行了验证。结果表明:随着埋入深度从1.0cm增加到1.5cm和2.0cm,最大拔出载荷显著增加,平均界面粘结强度却逐渐下降。当纤维埋入深度为2.0cm时,在0.300s时临界脱粘出现。利用在SMA表面涂覆纳米SiO2颗粒的方法可以增加纤维的表面粗糙度,进而有效提高SMA丝增强环氧树脂复合材料的临界拔出强度。研究结论为SMA丝在实际工程领域中的应用提供了理论指导。  相似文献   

10.
The mechanical behavior of unidirectional fiber-reinforced polymer composites subjected to tension and compression perpendicular to the fibers is studied using computational micromechanics. The representative volume element of the composite microstructure with random fiber distribution is generated, and the two dominant damage mechanisms experimentally observed – matrix plastic deformation and interfacial debonding – are included in the simulation by the extended Drucker–Prager model and cohesive zone model respectively. Progressive failure procedure for both the matrix and interface is incorporated in the simulation, and ductile criterion is used to predict the damage initiation of the matrix taking into account its sensitivity to triaxial stress state. The simulation results clearly reveal the damage process of the composites and the interactions of different damage mechanisms. It can be concluded that the tension fracture initiates as interfacial debonding and evolves as a result of interactions between interfacial debonding and matrix plastic deformation, while the compression failure is dominated by matrix plastic damage. And then the effects of interfacial properties on the damage behavior of the composites are assessed. It is found that the interfacial stiffness and fracture energy have relatively smaller influence on the mechanical behavior of composites, while the influence of interfacial strength is significant.  相似文献   

11.
The accurate prediction of failure of sandwich structures using cohesive mixed-mode damage models depends on the accurate characterization of the cohesive laws under pure mode loading. In this work, a numerical and experimental study on the asymmetric double cantilever beam (DCB) sandwich specimen is presented with the objective to characterize the debonding fracture between the face sheet and the core under pure mode I. A data reduction method based on beam theory was formulated in such a way to incorporate the complex damaging phenomena of the debonding due to the material and geometric asymmetry of the specimen, via the consideration of an equivalent crack length (ae). Experimental DCB tests were performed and the proposed methodology was followed to obtain the debonding fracture energy (GIc). The experimental tests were numerically simulated and a cohesive damage model was employed to reproduce crack propagation. An inverse method was followed to obtain the local cohesive strength (σu,I) based on the fitting of the numerical and experimental load–displacement curves. With the value of fracture energy and cohesive strength defined, the cohesive law for interface mode I fracture is characterized. Good agreement between the numerical and the experimental R-curves validates the accuracy of the proposed data reduction procedure.  相似文献   

12.
采用组合热源模型对Al-Li合金电子束焊接温度场分布进行数值模拟分析,通过热-力耦合,模拟计算得到接头区域的残余应力分布.结果表明,Al-Li合金电子束焊接温度场沿焊接方向呈椭圆形分布,电子束热源中心的温度最高,其附近区域的等温线分布密集,随着与热源中心的距离增大,等温线分布逐渐稀疏,焊缝区存在较大的温度梯度,较好地模拟出了电子束焊缝的钉形分布特征.接头的残余应力分布模拟结果显示,残余应力主要集中于焊缝区,由于修饰焊的热作用,焊缝上部具有相对较大的应力值.利用模拟计算得到的结果进行焊接工艺及参数优化,焊接工艺试验表明,试验焊缝形貌与模拟熔池形貌相吻合,进一步验证了模拟计算结果的可靠性.  相似文献   

13.
A two-dimensional finite element model is created to investigate the effects of temperature and residual stress on transverse tensile behaviors for SiC/Ti–6Al–4V composites with square fiber array. The spring elements are used to simulate interfacial debonding when interfacial radial stress, composed of residual radial stress and radial stress introduced by the applied transverse tensile stress, reaches interfacial bonding strength. The results indicate that temperature has an obvious influence on the collapse stress of composites due to the change of matrix strength with temperature. And the higher temperature is, the lower collapse stress is. Residual radial stress can increase the applied stress required to cause interfacial debonding, but has a little influence on the collapse stress of the composites.  相似文献   

14.
In this paper, an analytical method is developed to predict the distribution of interfacial shear stresses in concrete beams strengthened by composite plates. Accurate predictions of such stresses are necessary when designing to prevent debonding induced by a central flexural crack in a FRP-plated reinforced concrete (RC) beam. In the present analysis, a new theoretical model based on the bi-linear cohesive zone model for intermediate crack-induced debonding is established, with the unique feature of unifying debonding initiation and growth. Adherent shear deformations have been included in the present theoretical analyses by assuming a parabolic shear stress through the thickness of the adherents, verifying the cubic variation of the longitudinal displacement function, whereas all existing solutions neglect this effect. The results obtained for interfacial shear stress distribution near the crack are compared to the Jialai Wang analytical model and the numerical solutions are based on finite element analysis. Parametric studies are carried out to demonstrate the effect of the mechanical properties and thickness variations of FRP, concrete and adhesive on interface debonding. Indeed, the softening zone size is considerably larger than that obtained by other models which neglect adherent shear deformations. However, loads at the limit of the softening and debonding stages are larger than those calculated without the thickness effect. Consequently, debonding at the interface becomes less apparent and the lifespan of our structure is greater.  相似文献   

15.
A simulation of the fragmentation process experienced by a single fibre embedded in a resin matrix specimen loaded in tension is presented. The model is based on a combination of two successive regimes of stress building at the fragment extremities, namely elastic stress transfer and friction, and assumes the pull-out strength as the debonding criterion. The computed ultimate fragment length and interfacial transfer shear stress are compared with the experimental results.  相似文献   

16.
The aim of this article was to investigate the effects of vacuum thermal cycling on mechanical and physical properties of high performance carbon/bismaleimide (BMI) composites used in aerospace. The changes in dynamic mechanical properties and thermal stability were characterized by dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA), respectively. The changes in linear coefficient of thermal expansion (CTE) were measured in directions perpendicular and parallel to the fiber direction, respectively. The outgassing behavior of the composites were examined. The evolution of surface morphology and surface roughness were observed by atomic force microscopy (AFM). Changes in mechanical properties including transverse tensile strength, flexural strength and interlaminar shear strength (ILSS) were measured. The results indicated that the vacuum thermal cycling could improve the crosslinking degree and the thermal stability of resin matrix to a certain extent, and induce matrix outgassing and thermal stress, thereby leading to the mass loss and the interfacial debonding of the composite. The degradation in transverse tensile strength was caused by joint effects of the matrix outgassing and the interfacial debonding, while the changes in flexural strength and ILSS were affected by a competing effect between the crosslinking degree of resin matrix and the fiber-matrix debonding.  相似文献   

17.
Failure of fibre-reinforced composites by pull-out fracture   总被引:4,自引:0,他引:4  
A simple model is proposed to predict the ultimate tensile strength of fibre-reinforced composites when the failure is governed by fibre debonding. The theoretical analysis is based on the concept of fracture mechanics where the debonded zone is considered as an interfacial crack. The analysis is first applied to the classical pull-out test in order to determine the specific work of interfacial cracking. Using this value, the uniaxial tensile strength of the composites can be predicted from an approximate, closed-form equation proposed here. The theoretically predicted results seem to compare favourably with experimental values for fibrere-inforced cement based composite.  相似文献   

18.
The interfacial failure criterion under combined stress state in a glass fiber/epoxy composite is investigated by the cruciform specimen method. Experiments were conducted by using specimens with a fiber whose angle from the loading direction is varied in order to make various stress state of normal and shear at the interface. Finite element analysis is performed to calculate the interfacial stress distribution. By combining the experimental measurement of the specimen stress at the interfacial debonding initiation and the finite element stress analysis, it is possible to obtain the interfacial stress state at interfacial failure. A method to determine the interfacial failure criterion and the interfacial failure initiation location simultaneously is proposed in the present study. We conclude the value of the interfacial shear strength is higher than that of the interfacial normal strength for the material system used in the present study.  相似文献   

19.
The cohesive stress transfer during the sub-critical crack growth associated with the debonding of FRP from concrete under fatigue loading is experimentally investigated using the direct shear test set-up. The study focused on high-amplitude/low-cycle fatigue. The fatigue sub-critical crack growth occurs at a load that is smaller than the static bond capacity of the interface, obtained from monotonic quasi-static loading, and is also associated with a smaller value of the interfacial fracture energy. The strain distribution during debonding is obtained using digital image correlation. The results indicate that the strain distribution along the FRP during fatigue is similar to the strain distribution during debonding under monotonic quasi-static loading. The cohesive crack model and the shape of the strain distribution adopted for quasi-static monotonic loading is indirectly proven to be adequate to describe the stress transfer during fatigue loading. The length of the stress transfer zone during fatigue is observed to be smaller than the cohesive zone of the interfacial crack under quasi-static monotonic loading. The strain distribution across the width of the FRP sheet is not altered during and by fatigue loading. A new formulation to predict the debonding crack growth during fatigue is proposed.  相似文献   

20.
Carbon/carbon composites are well suited to high-friction applications due to their excellent mechanical and thermal properties. Since interfacial shear strength is critical to composite performance, characterization of fiber/matrix interface is a crucial step in tailored design of composites. This article presents a hybrid experimental/analytical study to evaluate the interfacial shear strength (IFSS) of PAN-fiber-reinforced carbon matrix composites. Microstructure was studied by light and high-resolution transmission electron microscopy (HRTEM). A series of push-out tests were conducted to examine the fiber/matrix debonding process. The residual fiber displacement was confirmed by scanning electron microcopy (SEM). The validity of the calculated IFSS value was demonstrated by a simplified analytical approach, where the components contributing to the measured displacement were analyzed considering the mechanics of the indentation. The method described in this article has been successfully used for determining the IFSS of PAN-fiber-reinforced carbon matrix composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号