首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this work is to present a level set‐based approach for the structural topology optimization problem of mass minimization submitted to local stress constraints. The main contributions are threefold. First, the inclusion of local stress constraints by means of an augmented Lagrangian approach within the level set context. Second, the proposition of a constraint procedure that accounts for a continuous activation/deactivation of a finite number of local stress constraints during the optimization sequence. Finally, the proposition of a logarithmic scaling of the level set normal velocity as an additional regularization technique in order to improve the minimization sequence. A set of benchmark tests in two dimensions achieving successful numerical results assesses the good behavior of the proposed method. In these examples, it is verified that the algorithm is able to identify stress concentrations and drive the design to a feasible local minimum. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
This paper will develop a new robust topology optimization (RTO) method based on level sets for structures subject to hybrid uncertainties, with a more efficient Karhunen-Loève hyperbolic Polynomial Chaos–Chebyshev Interval method to conduct the hybrid uncertain analysis. The loadings and material properties are considered hybrid uncertainties in structures. The parameters with sufficient information are regarded as random fields, while the parameters without sufficient information are treated as intervals. The Karhunen-Loève expansion is applied to discretize random fields into a finite number of random variables, and then, the original hybrid uncertainty analysis is transformed into a new process with random and interval parameters, to which the hyperbolic Polynomial Chaos–Chebyshev Interval is employed for the uncertainty analysis. RTO is formulated to minimize a weighted sum of the mean and standard variance of the structural objective function under the worst-case scenario. Several numerical examples are employed to demonstrate the effectiveness of the proposed RTO, and Monte Carlo simulation is used to validate the numerical accuracy of our proposed method.  相似文献   

3.
Topology optimization using stress constraints and considering uncertainties is a serious challenge, since a reliability problem has to be solved for each stress constraint, for each element in the mesh. In this paper, an alternative way of solving this problem is used, where uncertainty quantification is performed through the first‐order perturbation approach, with proper validation by Monte Carlo simulation. Uncertainties are considered in the loading magnitude and direction. The minimum volume problem subjected to local stress constraints is formulated as a robust problem, where the stress constraints are written as a weighted average between their expected value and standard deviation. The augmented Lagrangian method is used for handling the large set of local stress constraints, whereas a gradient‐based algorithm is used for handling the bounding constraints. It is shown that even in the presence of small uncertainties in loading direction, different topologies are obtained when compared to a deterministic approach. The effect of correlation between uncertainties in loading magnitude and direction on optimal topologies is also studied, where the main observed result is loss of symmetry in optimal topologies.  相似文献   

4.
In this article, a unified framework is introduced for robust structural topology optimization for 2D and 3D continuum and truss problems. The uncertain material parameters are modelled using a spatially correlated random field which is discretized using the Karhunen–Loève expansion. The spectral stochastic finite element method is used, with a polynomial chaos expansion to propagate uncertainties in the material characteristics to the response quantities. In continuum structures, either 2D or 3D random fields are modelled across the structural domain, while representation of the material uncertainties in linear truss elements is achieved by expanding 1D random fields along the length of the elements. Several examples demonstrate the method on both 2D and 3D continuum and truss structures, showing that this common framework provides an interesting insight into robustness versus optimality for the test problems considered.  相似文献   

5.
This paper develops a new reliability‐based topology optimization framework considering spatially varying geometric uncertainties. Geometric imperfections arising from manufacturing errors are modeled with a random threshold model. The projection threshold is represented by a memoryless transformation of a Gaussian random field, which is then discretized by means of the expansion optimal linear estimation. The structural response and their sensitivities are evaluated with the polynomial chaos expansion, and the accuracy of the proposed method is verified by Monte Carlo simulations. The performance measure approach is adopted to tackle the reliability constraints in the reliability‐based topology optimization problem. The optimized designs obtained with the present method are compared with the deterministic solutions and the reliability‐based design considering random variables. Numerical examples demonstrate the efficiency of the proposed method.  相似文献   

6.
Equality constraints have been well studied and widely used in deterministic optimization, but they have rarely been addressed in reliability‐based design optimization (RBDO). The inclusion of an equality constraint in RBDO results in dependency among random variables. Theoretically, one random variable can be substituted in terms of remaining random variables given an equality constraint; and the equality constraint can then be eliminated. However, in practice, eliminating an equality constraint may be difficult or impossible because of complexities such as coupling, recursion, high dimensionality, non‐linearity, implicit formats, and high computational costs. The objective of this work is to develop a methodology to model equality constraints and a numerical procedure to solve a RBDO problem with equality constraints. Equality constraints are classified into demand‐based type and physics‐based type. A sequential optimization and reliability analysis strategy is used to solve RBDO with physics‐based equality constraints. The first‐order reliability method is employed for reliability analysis. The proposed method is illustrated by a mathematical example and a two‐member frame design problem. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
This article presents the design of a metamaterial for the shear layer of a nonpneumatic tire using topology optimization, under stress and buckling constraints. These constraints are implemented for a smooth maximum function using global aggregation. A linear elastic finite element model is used, implementing solid isotropic material with penalization. Design sensitivities are determined by the adjoint method. The method of moving asymptotes is used to solve the numerical optimization problem. Two different optimization statements are used. Each requires a compliance limit and some aspect of continuation. The buckling analysis is linear, considering the generalized eigenvalue problem of the conventional and stress stiffness matrices. Various symmetries, base materials, and starting geometries are considered. This leads to novel topologies that all achieve the target effective shear modulus of 10 MPa, while staying within the stress constraint. The stress-only designs generally were susceptible to buckling failure. A family of designs (columnar, noninterconnected representative unit cells) that emerge in this study appears to exhibit favorable properties for this application.  相似文献   

8.
The desired results of variable topology material layout computations are stable and discrete material distributions that optimize the performance of structural systems. To achieve such material layout designs a continuous topology design framework based on hybrid combinations of classical Reuss (compliant) and Voigt (stiff) mixing rules is investigated. To avoid checkerboarding instabilities, the continuous topology optimization formulation is coupled with a novel spatial filtering procedure. The issue of obtaining globally optimal discrete layout designs with the proposed formulation is investigated using a continuation method which gradually transitions from the stiff Voigt formulation to the compliant Reuss formulation. The very good performance of the proposed methods is demonstrated on four structural topology design optimization problems from the literature. © 1997 John Wiley & sons, Ltd.  相似文献   

9.
This work is directed toward optimizing concept designs of structures featuring inelastic material behaviours by using topology optimization. In the proposed framework, alternative structural designs are described with the aid of spatial distributions of volume fraction design variables throughout a prescribed design domain. Since two or more materials are permitted to simultaneously occupy local regions of the design domain, small-strain integration algorithms for general two-material mixtures of solids are developed for the Voigt (isostrain) and Reuss (isostress) assumptions, and hybrid combinations thereof. Structural topology optimization problems involving non-linear material behaviours are formulated and algorithms for incremental topology design sensitivity analysis (DSA) of energy type functionals are presented. The consistency between the structural topology design formulation and the developed sensitivity analysis algorithms is established on three small structural topology problems separately involving linear elastic materials, elastoplastic materials, and viscoelastic materials. The good performance of the proposed framework is demonstrated by solving two topology optimization problems to maximize the limit strength of elastoplastic structures. It is demonstrated through the second example that structures optimized for maximal strength can be significantly different than those optimized for minimal elastic compliance. © 1997 John Wiley & Sons, Ltd.  相似文献   

10.
The inclusion of non‐linear elastic analyses into the topology optimization problem is necessary to capture the finite deformation response, e.g. the geometric non‐linear response of compliant mechanisms. In previous work, the non‐linear response is computed by standard non‐linear elastic finite element analysis. Here, we incorporate a load–displacement constraint method to traverse non‐linear equilibrium paths with limit points to design structures that exhibit snap‐through behaviour. To accomplish this, we modify the basic arc length algorithm and embed this analysis into the topology optimization problem. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
The integrated optimization of lightweight cellular materials and structures are discussed in this paper. By analysing the basic features of such a two‐scale problem, it is shown that the optimal solution strongly depends upon the scale effect modelling of the periodic microstructure of material unit cell (MUC), i.e. the so‐called representative volume element (RVE). However, with the asymptotic homogenization method used widely in actual topology optimization procedure, effective material properties predicted can give rise to limit values depending upon only volume fractions of solid phases, properties and spatial distribution of constituents in the microstructure regardless of scale effect. From this consideration, we propose the design element (DE) concept being able to deal with conventional designs of materials and structures in a unified way. By changing the scale and aspect ratio of the DE, scale‐related effects of materials and structures are well revealed and distinguished in the final results of optimal design patterns. To illustrate the proposed approach, numerical design problems of 2D layered structures with cellular core are investigated. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
As the aerospace and automotive industries continue to strive for efficient lightweight structures, topology optimization (TO) has become an important tool in this design process. However, one ever-present criticism of TO, and especially of multimaterial (MM) optimization, is that neither method can produce structures that are practical to manufacture. Optimal joint design is one of the main requirements for manufacturability. This article proposes a new density-based methodology for performing simultaneous MMTO and multijoint TO. This algorithm can simultaneously determine the optimum selection and placement of structural materials, as well as the optimum selection and placement of joints at material interfaces. In order to achieve this, a new solid isotropic material with penalization-based interpolation scheme is proposed. A process for identifying dissimilar material interfaces based on spatial gradients is also discussed. The capabilities of the algorithm are demonstrated using four case studies. Through these case studies, the coupling between the optimal structural material design and the optimal joint design is investigated. Total joint cost is considered as both an objective and a constraint in the optimization problem statement. Using the biobjective problem statement, the tradeoff between total joint cost and structural compliance is explored. Finally, a method for enforcing tooling accessibility constraints in joint design is presented.  相似文献   

13.
This work addresses the topology optimization approach to design robust compliant mechanisms with respect to uncertainties in the output stiffness, when compared to the traditional deterministic approach. To this end, two formulations are proposed: probabilistic and nonprobabilistic. The probabilistic formulation minimizes a joint objective function of expected output displacement plus a measure of its standard deviations, for given statistical distribution of the output stiffness. The nonprobabilistic formulation is written as minimization of a joint function of the median of output displacements, plus the width of the intervals that contains the extreme values of the output displacements, for a given interval of output stiffness. The Monte Carlo simulation method is used to evaluate expected values and standard deviations of output displacements in the probabilistic formulation and to assess results obtained with the deterministic approach. It is shown that both formulations lead to designs where output displacements are less sensitive to variations of output stiffness when compared to the traditional deterministic approach. Furthermore, as an additional benefit, it is observed that large variations of output stiffness can hinder the appearance of one-node connected hinges, usually found in the deterministic design of compliant mechanisms.  相似文献   

14.
We introduce an extension of current technologies for topology optimization of continuum structures which allows for treating local stress criteria. We first consider relevant stress criteria for porous composite materials, initially by studying the stress states of the so-called rank 2 layered materials. Then, on the basis of the theoretical study of the rank 2 microstructures, we propose an empirical model that extends the power penalized stiffness model (also called SIMP for Solid Isotropic Microstructure with Penalization for inter-mediate densities). In a second part, solution aspects of topology problems are considered. To deal with the so-called ‘singularity’ phenomenon of stress constraints in topology design, an ϵ-constraint relaxation of the stress constraints is used. We describe the mathematical programming approach that is used to solve the numerical optimization problems, and show results for a number of example applications. © 1998 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract

This paper combines previously developed techniques for image‐preprocessing and characteristic image‐interpreting together with a newly proposed automated shape‐optimization modeling technique into an integrated topology‐optimization and shape‐optimization system. As a result, structure designers are provided with an efficient and reliable automated structural optimization system (ASOS). The automated shape‐optimization modeling technique, the key technique in ASOS, uses hole‐expanding strategy, interference analysis, and hole shape‐adjusting strategy to automatically define the design variables and side constraints needed for shape optimization. This technique not only eliminates the need to manually define design variables and side constraints for shape optimization, but during the process of shape optimization also prevents interference between the interior holes and the exterior boundary. The ASOS is tested in three different structural configuration design examples.  相似文献   

16.
We present a convergent continuous branch‐and‐bound algorithm for global optimization of minimum weight truss topology problems with displacement, stress, and local buckling constraints. Valid inequalities which strengthen the problem formulation are derived. The inequalities are generated by solving well‐defined convex optimization problems. Computational results are reported on a large collection of problems taken from the literature. Most of these problems are, for the first time, solved with a proof of global optimality. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
The topology optimization problem of a continuum structure is further investigated under the independent position uncertainties of multiple external loads, which are now described with an interval vector of uncertain-but-bounded variables. In this study, the structural compliance is formulated with the quadratic Taylor series expansion of multiple loading positions. As a result, the objective gradient information to the topological variables can be evaluated efficiently upon an explicit quadratic expression as the loads deviate from their ideal application points. Based on the minimum (largest absolute) value of design sensitivities, which corresponds to the most sensitive compliance to the load position variations, a two-level optimization algorithm within the non-probabilistic approach is developed upon a gradient-based optimization method. The proposed framework is then performed to achieve the robust optimal configurations of four benchmark examples, and the final designs are compared comprehensively with the traditional topology optimizations under the loading point fixation. It will be observed that the present methodology can provide a remarkably different structural layout with the auxiliary components in the design domain to counteract the load position uncertainties. The numerical results also show that the present robust topology optimization can effectively prevent the structural performance from a noticeable deterioration than the deterministic optimization in the presence of load position disturbances.  相似文献   

18.
This paper presents the development of a computational model for the topology optimization problem, using a material distribution approach, of a 2-D linear-elastic solid subjected to thermal loads, with a compliance objective function and an isoperimetric constraint on volume. Defining formally the augmented Lagrangian associated with the optimization problem, the optimality conditions are derived analytically. The results of analysis are implemented in a computer code to produce numerical solutions for the optimal topology, considering the temperature distribution independent of design. The design optimization problem is solved via a sequence of linearized subproblems. The computational model developed is tested in example problems. The influence of both the temperature and the finite element model on the optimal solution obtained is analysed.  相似文献   

19.
We present a method for finding solutions of large‐scale binary programming problems where the calculation of derivatives is very expensive. We then apply this method to a topology optimization problem of weight minimization subject to compliance and buckling constraints. We derive an analytic expression for the derivative of the stress stiffness matrix with respect to the density of an element in the finite‐element setting. Results are presented for a number of two‐dimensional test problems.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
This paper will develop a new robust topology optimization method for the concurrent design of cellular composites with an array of identical microstructures subject to random‐interval hybrid uncertainties. A concurrent topology optimization framework is formulated to optimize both the composite macrostructure and the material microstructure. The robust objective function is defined based on the interval mean and interval variance of the corresponding objective function. A new uncertain propagation approach, termed as a hybrid univariate dimension reduction method, is proposed to estimate the interval mean and variance. The sensitivity information of the robust objective function can be obtained after the uncertainty analysis. Several numerical examples are used to validate the effectiveness of the proposed robust topology optimization method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号