首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A computational certification framework under limited experimental data is developed. By this approach, a high‐fidelity model (HFM) is first calibrated to limited experimental data. Subsequently, the HFM is employed to train a low‐fidelity model (LFM). Finally, the calibrated LFM is utilized for component analysis. The rational for utilizing HFM in the initial stage stems from the fact that constitutive laws of individual microphases in HFM are rather simple so that the number of material parameters that needs to be identified is less than in the LFM. The added complexity of material models in LFM is necessary to compensate for simplified kinematical assumptions made in LFM and for smearing discrete defect structure. The first‐order computational homogenization model, which resolves microstructural details including the structure of defects, is selected as the HFM, whereas the reduced‐order homogenization is selected as the LFM. Certification framework illustration, verification, and validation are conducted for ceramic matrix composite material system comprised of the 8‐harness weave architecture. Blind validation is performed against experimental data to validate the proposed computational certification framework.  相似文献   

2.
The model reduction of mechanical problems involving contact remains an important issue in computational solid mechanics. In this article, we propose an extension of the hyper‐reduction method based on a reduced integration domain to frictionless contact problems written by a mixed formulation. As the potential contact zone is naturally reduced through the reduced mesh involved in hyper‐reduced equations, the dual reduced basis is chosen as the restriction of the dual full‐order model basis. We then obtain a hybrid hyper‐reduced model combining empirical modes for primal variables with finite element approximation for dual variables. If necessary, the inf‐sup condition of this hybrid saddle‐point problem can be enforced by extending the hybrid approximation to the primal variables. This leads to a hybrid hyper‐reduced/full‐order model strategy. This way, a better approximation on the potential contact zone is further obtained. A posttreatment dedicated to the reconstruction of the contact forces on the whole domain is introduced. In order to optimize the offline construction of the primal reduced basis, an efficient error indicator is coupled to a greedy sampling algorithm. The proposed hybrid hyper‐reduction strategy is successfully applied to a 1‐dimensional static obstacle problem with a 2‐dimensional parameter space and to a 3‐dimensional contact problem between two linearly elastic bodies. The numerical results show the efficiency of the reduction technique, especially the good approximation of the contact forces compared with other methods.  相似文献   

3.
4.
A reduced order model designed by means of a variational multiscale stabilized formulation has been applied successfully to fluid-structure interaction problems in a strongly coupled partitioned solution scheme. Details of the formulation and the implementation both for the interaction problem and for the reduced models, for both the off-line and on-line phases, are shown. Results are obtained for cases in which both domains are reduced at the same time. Numerical results are presented for a semistationary and a fully transient case.  相似文献   

5.
This paper extends current concepts of topology optimization to the design of structures made of nonlinear microheterogeneous materials. The objective is to maximize the macroscopic structural stiffness for a prescribed material volume usage while accounting for the nonlinearity and the microstructure of the material. The resulting design problem considers two scales: the macroscopic scale at which the optimization is performed and the microscopic scale at which the material heterogeneities and the nonlinearities are observed. The topology optimization at the macroscopic scale is performed by means of the bi‐directional evolutionary structural optimization method. The solution of the macroscopic boundary value problem requires as inputs the effective constitutive response with full consideration of the microstructure. While computational homogenization methods such as the FE2 method could be used to solve the nonlinear multiscale problem, the associated numerical expense (CPU time and memory) is highly unacceptable. In order to regain the computational feasibility of the computational scale transition, a recent model reduction technique of the authors is employed: the potential‐based reduced basis model order reduction with graphics processing unit acceleration. Numerical examples show the efficiency of the resulting nonlinear two‐scale designs. The impact of different load amplitudes on the design is examined. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
We present an adaptive variant of the measure‐theoretic approach for stochastic characterization of micromechanical properties based on the observations of quantities of interest at the coarse (macro) scale. The salient features of the proposed nonintrusive stochastic inverse solver are identification of a nearly optimal sampling domain using enhanced ant colony optimization algorithm for multiscale problems, incremental Latin‐hypercube sampling method, adaptive discretization of the parameter and observation spaces, and adaptive selection of number of samples. A complete test data of the TORAY T700GC‐12K‐31E and epoxy #2510 material system from the National Institute for Aviation Research report is employed to characterize and validate the proposed adaptive nonintrusive stochastic inverse algorithm for various unnotched and open‐hole laminates. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
8.
In this paper, a new multiscale–multiphysics computational methodology is devised for the analysis of coupled diffusion–deformation problems. The proposed methodology is based on the variational multiscale principles. The basic premise of the approach is accurate fine‐scale representation at a small subdomain where it is known a priori that important physical phenomena are likely to occur. The response within the remainder of the problem domain is idealized on the basis of coarse‐scale representation. We apply this idea to evaluate a coupled mechano‐diffusion problem that idealizes the response of titanium structures subjected to a thermo–chemo–mechanical environment. The proposed methodology is used to devise a multiscale model in which the transport of oxygen into titanium is modeled as a diffusion process, whereas the mechanical response is idealized using concentration‐dependent elasticity equations. A coupled solution strategy based on operator split is formulated to evaluate the coupled multiphysics and multiscale problem. Numerical experiments are conducted to assess the accuracy and computational performance of the proposed methodology. Numerical simulations indicate that the variational multiscale enrichment has reasonable accuracy and is computationally efficient in modeling the coupled mechano‐diffusion response. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
This study presents an isogeometric framework for incorporating representative volume element–based multiscale models into computational homogenization. First‐order finite deformation homogenization theory is derived within the framework of the method of multiscale virtual power, and Lagrange multipliers are used to illustrate the effects of considering different kinematical constraints. Using a Lagrange multiplier approach in the numerical implementation of the discrete system naturally leads to a consolidated treatment of the commonly employed representative volume element boundary conditions. Implementation of finite deformation computational strain‐driven, stress‐driven, and mixed homogenization is detailed in the context of isogeometric analysis (IGA), and performance is compared to standard finite element analysis. As finite deformations are considered, a numerical multiscale stability analysis procedure is also detailed for use with IGA. Unique implementation aspects that arise when computational homogenization is performed using IGA are discussed, and the developed framework is applied to a complex curved microstructure representing an architectured material.  相似文献   

10.
Typical strategies for reducing the computational cost of contact mechanics models use low-rank approximations. The underlying hypothesis is the existence of a low-dimensional subspace for the displacement field and a non-negative low-dimensional subcone for the contact pressure. However, given the local nature of contact, it seems natural to wonder whether low-rank approximations are a good fit for contact mechanics or not. In this article, we investigate some of their limitations and provide numerical evidence showing that contact pressure is linearly inseparable in many practical cases. To this end, we consider various mechanical problems involving nonadhesive frictionless contacts and analyze the performance of the low-rank models in terms of three different criteria, namely, compactness, generalization, and specificity.  相似文献   

11.
12.
In the first part of this contribution, a brief theoretical revision of the mechanical and variational foundations of a Failure‐Oriented Multiscale Formulation devised for modeling failure in heterogeneous materials is described. The proposed model considers two well separated physical length scales, namely: (i) the macroscale where nucleation and evolution of a cohesive surface is considered as a medium to characterize the degradation phenomenon occurring at the lower length scale, and (ii) the microscale where some mechanical processes that lead to the material failure are taking place, such as strain localization, damage, shear band formation, and so on. These processes are modeled using the concept of Representative Volume Element (RVE). On the macroscale, the traction separation response, characterizing the mechanical behavior of the cohesive interface, is a result of the failure processes simulated in the microscale. The traction separation response is obtained by a particular homogenization technique applied on specific RVE sub‐domains. Standard, as well as, Non‐Standard boundary conditions are consistently derived in order to preserve objectivity of the homogenized response with respect to the micro‐cell size. In the second part of the paper, and as an original contribution, the detailed numerical implementation of the two‐scale model based on the finite element method is presented. Special attention is devoted to the topics, which are distinctive of the Failure‐Oriented Multiscale Formulation, such as: (i) the finite element technologies adopted in each scale along with their corresponding algorithmic expressions, (ii) the generalized treatment given to the kinematical boundary conditions in the RVE, and (iii) how these kinematical restrictions affect the capturing of macroscopic material instability modes and the posterior evolution of failure at the RVE level. Finally, a set of numerical simulations is performed in order to show the potentialities of the proposed methodology, as well as, to compare and validate the numerical solutions furnished by the two‐scale model with respect to a direct numerical simulation approach. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
This paper details a novel new multiscale technique for modeling heterogeneous materials undergoing substantial thermal stresses. The technique is based on an enriched partition of unity approach that incorporates the thermal effects occurring on the microstructure into the global model. We demonstrate the effectiveness of this technique by implementing it into both the standard finite element method and the octree partition of unity method (OctPUM). The results demonstrate that the technique has uniquely improved accuracy over the homogenization method conditional to the method into which it is implemented in. The multiscale technique, when implemented into either the standard finite element method or OctPUM, increases the accuracy of the strain energy calculation. When the multiscale technique is implemented into OctPUM, it also is able to capture the unique stress fields on the microstructure of the model. Published 2012. This article is a US Government work and is in the public domain in the USA.  相似文献   

14.
Formulation of the scale transition equations coupling the microscopic and macroscopic variables in the second‐order computational homogenization of heterogeneous materials and the enforcement of generalized boundary conditions for the representative volume element (RVE) are considered. The proposed formulation builds on current approaches by allowing any type of RVE boundary conditions (e.g. displacement, traction, periodic) and arbitrary shapes of RVE to be applied in a unified manner. The formulation offers a useful geometric interpretation for the assumptions associated with the microstructural displacement fluctuation field within the RVE, which is here extended to second‐order computational homogenization. A unified approach to the enforcement of the boundary conditions has been undertaken using multiple constraint projection matrices. The results of an illustrative shear layer model problem indicate that the displacement and traction RVE boundary conditions provide the upper and lower bounds of the response determined via second‐order computational homogenization, and the solution associated with the periodic RVE boundary conditions lies between them. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
A reduction/hyper reduction framework is presented for dramatically accelerating the solution of nonlinear dynamic multiscale problems in structural and solid mechanics. At each scale, the dimensionality of the governing equations is reduced using the method of snapshots for proper orthogonal decomposition, and computational efficiency is achieved for the evaluation of the nonlinear reduced‐order terms using a carefully designed configuration of the energy conserving sampling and weighting method. Periodic boundary conditions at the microscales are treated as linear multipoint constraints and reduced via projection onto the span of a basis formed from the singular value decomposition of Lagrange multiplier snapshots. Most importantly, information is efficiently transmitted between the scales without incurring high‐dimensional operations. In this proposed proper orthogonal decomposition–energy conserving sampling and weighting nonlinear model reduction framework, training is performed in two steps. First, a microscale hyper reduced‐order model is constructed in situ, or using a mesh coarsening strategy, in order to achieve significant speedups even in non‐parametric settings. Next, a classical offline–online training approach is performed to build a parametric hyper reduced‐order macroscale model, which completes the construction of a fully hyper reduced‐order parametric multiscale model capable of fast and accurate multiscale simulations. A notable feature of this computational framework is the minimization, at the macroscale level, of the cost of the offline training using the in situ or coarsely trained hyper reduced‐order microscale model to accelerate snapshot acquisition. The effectiveness of the proposed hyper reduction framework at accelerating the solution of nonlinear dynamic multiscale problems is demonstrated for two problems in structural and solid mechanics. Speedup factors as high as five orders of magnitude are shown to be achievable. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
This article proposes a two‐scale formulation of fully coupled continuum thermomechanics using the finite element method at both scales. A monolithic approach is adopted in the solution of the momentum and energy equations. An efficient implementation of the resulting algorithm is derived that is suitable for multicore processing. The proposed method is applied with success to a strongly coupled problem involving shape‐memory alloys.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
The objective of this work is to develop an efficient strategy for the parametric study of dynamic problems involving contacts with friction. Our approach is based on the multiscale LATIN method with domain decomposition. This is a mixed method that deals with the forces and velocities at the interfaces between the different subdomains simultaneously. We propose to take advantage of the capability of the multiscale LATIN method, called the multiparametric strategy, to reuse the solution of a given problem in order to solve similar problems. This strategy has already been applied successfully to a variety of static problems; here, it is extended to dynamics. First, we present the multiscale strategy in dynamics. Then, we show how the multiparametric strategy can be extended to dynamics. We illustrate the capabilities of the method through an academic 3D example and the simulation of a bolted joint. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
A computational homogenization scheme is developed to model heterogeneous hyperelastic materials undergoing large deformations. The homogenization scheme is based on a so‐called computational continua formulation in which the macro‐scale model is assumed to consist of disjoint unit cells. This formulation adds no higher‐order boundary conditions and extra degrees of freedom to the problem. A computational procedure is presented to calculate the macroscopic quantities from the solution of the representative volume element boundary value problem. The proposed homogenization scheme is verified against a direct numerical simulation. It is also shown that the computational cost of the proposed model is lower than that of standard homogenization schemes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
A gradient‐enhanced computational homogenization procedure, that allows for the modelling of microstructural size effects, is proposed within a general non‐linear framework. In this approach the macroscopic deformation gradient tensor and its gradient are imposed on a microstructural representative volume element (RVE). This enables us to incorporate the microstructural size and to account for non‐uniform macroscopic deformation fields within the microstructural cell. Every microstructural constituent is modelled as a classical continuum and the RVE problem is formulated in terms of standard equilibrium and boundary conditions. From the solution of the microstructural boundary value problem, the macroscopic stress tensor and the higher‐order stress tensor are derived based on an extension of the Hill–Mandel condition. This automatically delivers the microstructurally based constitutive response of the higher‐order macro continuum and deals with the microstructural size in a natural way. Several examples illustrate the approach, particularly the microstructural size effects. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
A stable meshless method for studying the finite deformation of non‐linear three‐dimensional (3D) solids is presented. The method is based on a variational framework with the necessary integrals evaluated through nodal integration. The method is truly meshless, requiring no 3D meshing or tessellation of any form. A local least‐squares approximation about each node is used to obtain necessary deformation gradients. The use of a local field approximation makes automatic grid refinement and the application of boundary conditions straightforward. Stabilization is achieved through the use of special ‘umbrella’ shape functions that have discontinuous derivatives at the nodes. Novel efficient algorithms for constructing the nodal stars and computing the nodal volumes are presented. The method is applied to four test problems: uniaxial tension, simple shear and bending of a bar, and cylindrical indentation. Convergence studies at infinitesimal strain show that the method is well‐behaved and converges with the number of nodes for both uniform and non‐uniform grids. Typical of meshless methods employing nodal integration, the total energy can be underestimated due to the approximate integration. At finite deformation the method reproduces known exact solutions. The bending example demonstrates an interesting example of torsional buckling resulting from the bending. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号