首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
When multiple trapezoidal four‐node plane elements are used to model slender beams, it is found that the transverse bending stress/strain mode which should physically vanish is most detrimental to the element accuracy and leads to a deficiency which is sometimes known as ‘trapezoidal locking’. In this paper, immunity of four‐node five‐beta hybrid elements to ‘trapezoidal locking’ in practical analyses is obtained by a simple selective scaling procedure that judiciously reduces the stiffness arising from the two bending stress/strain modes in the elements. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
In this work, we develop an isogeometric non‐uniform rational B‐spline (NURBS)‐based solid‐shell element for the geometrically nonlinear static analysis of elastic shell structures. A single layer of continuous 3D elements through the thickness of the shell is considered, and the order of approximation in that direction is chosen to be equal to two. A complete 3D constitutive relation is assumed. The objective is to develop a highly accurate low‐order element for coarse meshes. We propose an extension of the mixed method of Bouclier et al. [11] to deal with locking in the context of large rotations and large displacements. The main idea is to modify the interpolation of the average through the thickness of the stress components. It is also necessary to stabilize the element in order to avoid the occurrence of spurious zero‐energy modes. This was achieved, for the quadratic version, through the adjunction of artificial elementary stabilization stiffnesses. The result is an element of order 2, which is at least as accurate as standard NURBS shell elements of order 4. Linear and nonlinear test calculations have been carried out along with comparisons with other published NURBS and classical techniques in order to assess the performance of the element. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
The major goal of this work is to develop a robust modelling strategy for the simulation of ductile damage development including crack initiation and subsequent propagation. For that purpose, a Gurson‐type model is used. This model class, as many other damage models, leads to significant material softening and must be used within a large deformation framework due to the ductile character of the materials. This leads to 2 main difficulties that should be dealt with carefully: mesh dependency and volumetric locking. In this work, a logarithmic finite strain framework is adopted in which the Gurson‐Tvergaard‐Needleman constitutive law is reformulated. Then a nonlocal formulation with regularisation of hardening variable is applied so as to solve mesh dependency and strain localization problem. In addition, the nonlocal model is combined with mixed “displacement‐pressure‐volume variation” elements to avoid volumetric locking. Thereby, a mesh‐independent and locking‐free finite strain framework suitable for the modelling of ductile rupture is established. Attention is paid to mathematical properties and numerical performance of the model. Finally, the model parameters are identified on an experimental database for a nuclear piping steel. Simulations of standard test specimens (notched tensile bars and compact tension and single edge notched tensile cracked specimens) are performed and compared to experimental results.  相似文献   

4.
It is the aim to compute efficiently the deformations of the mechanical structures that are excited or damped by piezoelectric actuators. They are treated as 3D structures to have much flexibility. Special design of the finite element concept is required since the structures are thin walled and locking effects have to be avoided. Although the computations are performed in the framework of 3D elasticity, we use ideas from modern plate elements and mixed methods. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
A new discontinuous Galerkin method for elliptic problems which is capable of rendering the same set of unknowns in the final system of equations as for the continuous displacement‐based Galerkin method is presented. Those equations are obtained by the assembly of element matrices whose structure in particular cases is also identical to that of the continuous displacement approach. This makes the present formulation easily implementable within the existing commercial computer codes. The proposed approach is named the embedded discontinuous Galerkin method. It is applicable to any system of linear partial differential equations but it is presented here in the context of linear elasticity. An application of the method to linear shell problems is then outlined and numerical results are presented. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Moving from the seminal papers of Han and Reddy, we propose a fixed‐point algorithm for the solution of hardening plasticity two‐dimensional problems. The continuous problem may be classified as a mixed non‐linear non‐differentiable variational inequality of the second type and is discretized by means of a truly mixed finite‐element scheme. One of the main peculiarities of our approach is the use of the composite triangular element of Johnson and Mercier for the approximation of the stress field. The non‐differentiability is coped with via regularization whereas the non‐linearity is approached with a fixed‐point iterative strategy. Numerical results are proposed that investigate the sensitivity of the approach with respect to the mesh size and the regularization parameter ε. The simplicity of the proposed fixed‐point scheme with respect to more classical return mapping approaches seems to represent one of the key features of our algorithm. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
This paper is concerned with a geometrically non‐linear solid shell element to analyse piezoelectric structures. The finite element formulation is based on a variational principle of the Hu–Washizu type and includes six independent fields: displacements, electric potential, strains, electric field, mechanical stresses and dielectric displacements. The element has eight nodes with four nodal degrees of freedoms, three displacements and the electric potential. A bilinear distribution through the thickness of the independent electric field is assumed to fulfill the electric charge conservation law in bending dominated situations exactly. The presented finite shell element is able to model arbitrary curved shell structures and incorporates a 3D‐material law. A geometrically non‐linear theory allows large deformations and includes stability problems. Linear and non‐linear numerical examples demonstrate the ability of the proposed model to analyse piezoelectric devices. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Volumetric locking (locking in the incompressible limit) for linear elastic isotropic materials is studied in the context of the element‐free Galerkin method. The modal analysis developed here shows that the number of non‐physical locking modes is independent of the dilation parameter (support of the interpolation functions). Thus increasing the dilation parameter does not suppress locking. Nevertheless, an increase in the dilation parameter does reduce the energy associated with the non‐physical locking modes; thus, in part, it alleviates the locking phenomena. This is shown for linear and quadratic orders of consistency. Moreover, the biquadratic order of consistency, as in finite elements, improves the locking behaviour. Although more locking modes are present in the element‐free Galerkin method with quadratic consistency than with standard biquadratic finite elements. Finally, numerical examples are shown to validate the modal analysis. In particular, the conclusions of the modal analysis are also confirmed in an elastoplastic example. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
The acoustic radiation of general structures with Neumann's boundary condition using Variational Boundary Element Method (VBEM) is considered. The classical numerical implementation of the VBEM suffers from the computation cost associated with double surface integration. To alleviate this limitation, a novel acceleration method is proposed. The method is based on the expansion of the cross influence matrices in terms of multipoles using the expansion of the Green's function in terms of spherical Bessel functions. Since the resulting multipoles are not dependent on the elements locations, large computation time savings are achieved. Moreover, it is shown that by accounting for the monopole, dipole and quadrupole terms in the multipole expansion, the classical convergence criteria usually used in boundary element guarantee convergence of the proposed method. Several numerical examples are presented to demonstrate the efficiency and accuracy of the proposed method. © 1998 John Wiley & Sons, Ltd.  相似文献   

10.
We present a finite element method for non‐linear and nearly incompressible elasticity. The formulation is based on Petrov–Galerkin discretization for the pressure and is closely related to the average nodal pressure formulation presented earlier in the context of incompressible and nearly incompressible dynamic explicit applications (Commun. Numer. Meth. Engng 1998; 14 :437–449). Some numerical examples are presented to show the efficiency of the approach. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents a new 4‐node finite‐element for the analysis of laminated composite plates. The element is based on a first‐order shear deformation theory and is obtained through a mixed‐enhanced approach. In fact, the adopted variational formulation includes as variables the transverse shear as well as enhanced incompatible modes introduced to improve the in‐plane deformation. The problem is then discretized using bubble functions for the rotational degrees of freedom and functions linking the transverse displacement to the rotations. The proposed element is locking free, it does not have zero energy modes and provides accurate in‐plane/out‐of‐plane deformations. Furthermore, a procedure for the computation of the through‐the‐thickness shear stresses is discussed, together with an iterative algorithm for the evaluation of the shear correction factors. Several applications are investigated to assess the features and the performances of the proposed element. Results are compared with analytical solutions and with other finite‐element solutions. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
Diffusion‐type partial differential equation is a common mathematical model in physics. Solved by mixed finite elements, it leads to a system matrix which is not always an M‐matrix. Therefore, the numerical solution may exhibit unphysical results due to oscillations. The criterion necessary to obtain an M‐matrix is discussed in details for triangular, rectangular and tetrahedral elements. It is shown that the system matrix is never an M‐matrix for rectangular elements and can be an M‐matrix for triangular an tetrahedral elements if criteria on the element's shape and on the time step length are fulfilled. A new mass lumping scheme is developed which leads to a less restrictive criterion: the discretization must be weakly acute (all angles less than π/2) and there is no constraint on the time step length. The lumped formulation of mixed hybrid finite element can be applied not only to triangular meshes but also to more general shape elements in two and three dimensions. Numerical experiments show that, compared to the standard mixed hybrid formulation, the lumping scheme avoids (or strongly reduce) oscillations and does not create additional numerical errors. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
A novel finite element (FE) formulation with adaptive mesh rezoning for large deformation problems is proposed. The proposed method takes the advantage of the selective smoothed FE method (S‐FEM), which has been recently developed as a locking‐free FE formulation with strain smoothing technique. We adopt the selective face‐based smoothed/node‐based smoothed FEM (FS/NS‐FEM‐T4) and edge‐based smoothed/node‐based smoothed FEM (ES/NS‐FEM‐T3) basically but modify them partly so that our method can handle any kind of material constitutive models other than elastic models. We also present an adaptive mesh rezoning method specialized for our S‐FEM formulation with material constitutive models in total form. Because of the modification of the selective S‐FEMs and specialization of adaptive mesh rezoning, our method is locking‐free for severely large deformation problems even with the use of tetrahedral and triangular meshes. The formulation details for static implicit analysis and several examples of analysis of the proposed method are presented in this paper to demonstrate its efficiency. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
The degenerated approach for shell elements of Ahmad and co‐workers is revisited in this paper. To avoid transverse shear locking effects in four‐node bilinear elements, an alternative formulation based on the enhanced assumed strain (EAS) method of Simo and Rifai is proposed directed towards the transverse shear terms of the strain field. In the first part of the work the analysis of the null transverse shear strain subspace for the degenerated element and also for the selective reduced integration (SRI) and assumed natural strain (ANS) formulations is carried out. Locking effects are then justified by the inability of the null transverse shear strain subspace, implicitly defined by a given finite element, to properly reproduce the required displacement patterns. Illustrating the proposed approach, a remarkably simple single‐element test is described where ANS formulation fails to converge to the correct results, being characterized by the same performance as the degenerated shell element. The adequate enhancement of the null transverse shear strain subspace is provided by the EAS method, enforcing Kirchhoff hypothesis for low thickness values and leading to a framework for the development of shear‐locking‐free shell elements. Numerical linear elastic tests show improved results obtained with the proposed formulation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
The paper proposes an approach for the imposition of constraints along moving or fixed immersed interfaces in the context of the extended finite element method. An enriched approximation space enables consistent representation of strong and weak discontinuities in the solution fields along arbitrarily‐shaped material interfaces using an unfitted background mesh. The use of Lagrange multipliers or penalty methods is circumvented by a localized mixed hybrid formulation of the model equations. In a defined region in the vicinity of the interface, the original problem is re‐stated in its auxiliary formulation. The availability of the auxiliary variable enables the consideration of a variety of interface constraints in the weak form. The contribution discusses the weak imposition of Dirichlet‐ and Neumann‐type interface conditions as well as continuity requirements not fulfilled a priori by the enriched approximation. The properties of the proposed approach applied to two‐dimensional linear scalar‐ and vector‐valued elliptic problems are investigated by studying the convergence behavior. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The automatic generation of meshes for the finite element (FE) method can be an expensive computational burden, especially in structural problems with localized stress peaks. The use of meshless methods can address such an issue, as these techniques do not require the existence of an underlying connection among the particles selected in a general domain. This study advances a numerical strategy that blends the FE method with the meshless local Petrov–Galerkin technique in structural mechanics, with the aim at exploiting the most attractive features of each procedure. The idea relies on the use of FEs to compute a background solution that is locally improved by enriching the approximation space with the basis functions associated to a few meshless points, thus taking advantage of the flexibility ensured by the use of particles disconnected from an underlying grid. Adding the meshless particles only where needed avoids the cost of mesh refining, or even of remeshing, without the prohibitive computational cost of a thoroughly meshfree approach. In the present implementation, an efficient integration strategy for the computation of the coefficients taking into account the mutual FE–meshless local Petrov–Galerkin interactions is introduced. Moreover, essential boundary conditions are enforced separately on both FEs and meshless particles, thus allowing for an overall accuracy improvement also when the enriched region is close to the domain boundary. Numerical examples in structural problems show that the proposed approach can significantly improve the solution accuracy at a local level, with no remeshing effort, and at a low computational cost. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
The purpose of this article is to present a general framework for constitutive viscoelastic models in finite strain regime. The approach is qualified as variational since the constitutive updates obey a minimum principle within each load increment. The set of internal variables is strain‐based and employs, according to the specific model chosen, a multiplicative decomposition of strain into elastic and viscous components. The present approach shares the same technical procedures used for analogous models of plasticity or viscoplasticity, such as the solution of a minimization problem to identify inelastic updates and the use of exponential mapping for time integration. However, instead of using the classical decomposition of inelastic strains into amplitude and direction, we take advantage of a spectral decomposition that provides additional facilities to accommodate, into simple analytical expressions, a wide set of specific models. Moreover, appropriate choices of the constitutive potentials allow the reproduction of other formulations in the literature. The final part of the paper presents a set of numerical examples in order to explore the characteristics of the formulation as well as its applicability to usual large‐scale FEM analyses. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
This paper addresses the problem of the numerical solution of beam statics undergoing large displacements. A kinematic analysis outlines the beam geometrical model through the definition of its Lagrangian co-ordinate and strain parameters. A definition of the stress parameters, a constitutive law and an expression for the strain energy of the beam are then provided under the hypothesis of small strain. The equations governing the beam equilibrium are introduced and their weak form is derived. These equations are then proved to be equivalent to the primal and mixed form of Principle of Virtual Work. The numerical approximation is introduced by applying the bidiscontinuous finite elements method on the linearized weak form. The weak–weak formulation is attained by using the lowest interpolation order both for test and trial functions on two staggered decompositions of the space domain. Some numerical examples prove the capability of present formulation in handling actual problems.  相似文献   

19.
We present an alternative topology optimization formulation capable of handling the presence of stress constraints in a straightforward fashion. The main idea is to adopt a mixed finite‐element discretization scheme wherein not only displacements (as usual) but also stresses are the variables entering the formulation. By doing so, any stress constraint may be handled within the optimization procedure without resorting to post‐processing operation typical of displacement‐based techniques that may also cause a loss in accuracy in stress computation if no smoothing of the stress is performed. Two dual variational principles of Hellinger–Reissner type are presented in continuous and discrete form that, which included in a rather general topology optimization problem in the presence of stress constraints that is solved by the method of moving asymptotes (Int. J. Numer. Meth. Engng. 1984; 24 (3):359–373). Extensive numerical simulations are performed and ongoing extensions outlined, including the optimization of elastoplastic and incompressible media. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
We present a class of finite elements for capturing sub‐grid localization processes such as shear bands and void sheets. The elements take the form of a double surface and deform in accordance with an arbitrary constitutive law. In particular they allow for the development of displacement and velocity jumps across volume element boundaries. The thickness of the localized zone is set by an additional field variable which is determined variationally. The localization elements are inserted, and become active, only when localized deformations become energetically favourable. The implementation presented in this work is three‐dimensional and allows for finite deformations. The versatility and predictive ability of the method are demonstrated through a simple shear test and the simulation of the dynamic impact of a pre‐notched C300 steel sample by a steel projectile. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号