首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several cases of nonlinear wave propagation are studied numerically in two dimensions within the framework of potential flow. The Laplace equation is solved with the harmonic polynomial cell (HPC) method, which is a field method with high‐order accuracy. In the HPC method, the computational domain is divided into overlapping cells. Within each cell, the velocity potential is represented by a sum of harmonic polynomials. Two different methods denoted as immersed boundary (IB) and multigrid (MG) are used to track the free surface. The former treats the free surface as an IB in a fixed Cartesian background grid, while the latter uses a free‐surface fitted grid that overlaps with a Cartesian background grid. The simulated cases include several nonlinear wave mechanisms, such as high steepness and shallow‐water effects. For one of the cases, a numerical scheme to suppress local wave breaking is introduced. Such scheme can serve as a practical mean to ensure numerical stability in simulations where local breaking is not significant for the result. For all the considered cases, both the IB and MG method generally give satisfactory agreement with known reference results. Although the two free‐surface tracking methods mostly have similar performance, some differences between them are pointed out. These include aspects related to modeling of particular physical problems as well as their computational efficiency when combined with the HPC method.  相似文献   

2.
In this paper, a simple Cartesian ghost‐cell multigrid Poisson solver is proposed for simulating incompressible fluid flows. The flow field is discretized efficiently on a rectangular mesh, in which solid bodies are immersed. A small number of ghost mesh cells and their symmetric image cells are distributed in the vicinity of the solid boundary. With the aid of the ghost and image cells, the Dirichlet and Neumann boundary conditions can be implemented effectively. Chorin's fractional‐step projection method is adopted for the coupling of velocity and pressure for the solution of the Navier–Stokes equations. Point‐wise Gauss–Seidel iteration is used to solve the pressure Poisson equation. To speed up the convergence of the solution to the corresponding linear system, sub‐level coarse meshes embedded with ghost and image cells are also introduced and operated in a sequential V‐cycle. Several test cases including the classical ideal incompressible flow around a cylinder, a lid‐driven cavity flow and viscous flow past a fixed/rotating cylinder are presented to demonstrate the accuracy and efficiency of the current approach. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Satya Deo 《Sadhana》2004,29(4):381-387
The problem of creeping flow past a swarm of porous circular cylinders with Happel and Kuwabara boundary conditions is investigated. The Brinkman equation for the flow inside the porous cylinder and the Stokes equation outside the porous cylinder in their stream function formulations are used. The force experienced by each porous circular cylinder in a cell is evaluated. Explicit expressions of stream functions are obtained for both the inside and outside flow fields. The earlier results reported by Happel and Kuwabara for flow past a solid cylinder in Happel’s and Kuwabara’s cell model, have been deduced. Analytical expressions for the velocity components, pressure, vorticity and stresstensor are also obtained  相似文献   

4.
The current work presents an improved immersed boundary method based on the ideas proposed by Vanella and Balaras (M. Vanella, E. Balaras, A moving‐least‐squares reconstruction for embedded‐boundary formulations, J. Comput. Phys. 228 (2009) 6617–6628). In the method, an improved moving‐least‐squares approximation is employed to build the transfer functions between the Lagrangian points and discrete Eulerian grid points. The main advantage of the improved method is that there is no need to obtain the inverse matrix, which effectively eliminates numerical instabilities caused by matrix inversion and reduces the computational cost significantly. Several different flow problems (Taylor‐Green decaying vortices, flows past a stationary circular cylinder and a sphere, and the sedimentation of a free‐falling sphere in viscous fluid) are simulated to validate the accuracy and efficiency of the method proposed in the present paper. The simulation results show good agreement with previous numerical and experimental results, indicating that the improved immersed boundary method is efficient and reliable in dealing with the fluid–solid interaction problems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
S Peter  A K De 《Sadhana》2016,41(4):441-450
A modified version of the previously reported ghost-cell immersed boundary method is implemented in parallel environment based on distributed memory allocation. Reconstruction of the flow variables is carried out by the inverse distance weighting technique. Implementation of the normal pressure gradient on the immersed surface is demonstrated. Finite volume method with non-staggered arrangement of variables on a non-uniform cartesian grid is employed to solve the fluid flow equations. The proposed method shows reasonable agreement with the reported results for flow past a stationary sphere, rotating and transversely oscillating circular cylinder.  相似文献   

6.
A two‐dimensional numerical model for unsteady viscous flow around flexible bodies is developed. Bodies are represented by distributed body forces. The body force density is found at every time‐step so as to adjust the velocity within the computational cells occupied by the body to a prescribed value. The method combines certain ideas from the immersed boundary method and the volume of fluid method. The main advantage of this method is that the computations can be effected on a Cartesian grid, without having to fit the grid to the body surface. This is particularly useful in the case of flexible bodies, in which case the surface of the object changes dynamically, and in the case of multiple bodies moving relatively to each other. The capabilities of the model are demonstrated through the study of the flow around a flapping flexible airfoil. The novelty of this method is that the surface of the airfoil is modelled as an active flexible skin that actually drives the flow. The accuracy and fidelity of the model are validated by reproducing well‐established results for vortex shedding from a stationary as well as oscillating rigid cylinder. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
In the present study, a lattice Boltzmann method based new immersed boundary technique is proposed for simulating two-dimensional viscous incompressible flows interacting with stationary and moving solid boundaries. The lattice Boltzmann method with known force field is used to simulate the flow where the complex geometry is immersed inside the computational domain. This is achieved via direct-momentum forcing on a Cartesian grid by combining "solid-body forcing" at solid nodes and interpolation on neighboring fluid nodes. The proposed method is examined by simulating decaying vortex, 2D flow over an asymmetrically placed cylinder, and in-line oscillating cylinder in a fluid at rest. Numerical simulations indicate that this method is second order accurate, and all the numerical results are compatible with the benchmark solutions.  相似文献   

8.
A simple embedded domain method for node‐based unstructured grid solvers is presented. The key modification of the original, edge‐based solver is to remove all geometry‐parameters (essentially the normals) belonging to edges cut by embedded surface faces. Several techniques to improve the treatment of boundary points close to the immersed surfaces are explored. Alternatively, higher‐order boundary conditions are achieved by duplicating crossed edges and their endpoints. Adaptive mesh refinement based on proximity to or the curvature of the embedded CSD surfaces is used to enhance the accuracy of the solution. User‐defined or automatic deactivation for the regions inside immersed solid bodies is employed to avoid unnecessary work. Several examples are included that show the viability of this approach for inviscid and viscous, compressible and incompressible, steady and unsteady flows, as well as coupled fluid–structure problems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
We adopt a numerical method to solve Poisson's equation on a fixed grid with embedded boundary conditions, where we put a special focus on the accurate representation of the normal gradient on the boundary. The lack of accuracy in the gradient evaluation on the boundary is a common issue with low‐order embedded boundary methods. Whereas a direct evaluation of the gradient is preferable, one typically uses post‐processing techniques to improve the quality of the gradient. Here, we adopt a new method based on the discontinuous‐Galerkin (DG) finite element method, inspired by the recent work of [A.J. Lew and G.C. Buscaglia. A discontinuous‐Galerkin‐based immersed boundary method. International Journal for Numerical Methods in Engineering, 76:427‐454, 2008]. The method has been enhanced in two aspects: firstly, we approximate the boundary shape locally by higher‐order geometric primitives. Secondly, we employ higher‐order shape functions within intersected elements. These are derived for the various geometric features of the boundary based on analytical solutions of the underlying partial differential equation. The development includes three basic geometric features in two dimensions for the solution of Poisson's equation: a straight boundary, a circular boundary, and a boundary with a discontinuity. We demonstrate the performance of the method via analytical benchmark examples with a smooth circular boundary as well as in the presence of a singularity due to a re‐entrant corner. Results are compared to a low‐order extended finite element method as well as the DG method of [1]. We report improved accuracy of the gradient on the boundary by one order of magnitude, as well as improved convergence rates in the presence of a singular source. In principle, the method can be extended to three dimensions, more complicated boundary shapes, and other partial differential equations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
The finite cell method (FCM) is an immersed domain finite element method that combines higher‐order non‐boundary‐fitted meshes, weak enforcement of Dirichlet boundary conditions, and adaptive quadrature based on recursive subdivision. Because of its ability to improve the geometric resolution of intersected elements, it can be characterized as an immersogeometric method. In this paper, we extend the FCM, so far only used with Cartesian hexahedral elements, to higher‐order non‐boundary‐fitted tetrahedral meshes, based on a reformulation of the octree‐based subdivision algorithm for tetrahedral elements. We show that the resulting TetFCM scheme is fully accurate in an immersogeometric sense, that is, the solution fields achieve optimal and exponential rates of convergence for h‐refinement and p‐refinement, if the immersed geometry is resolved with sufficient accuracy. TetFCM can leverage the natural ability of tetrahedral elements for local mesh refinement in three dimensions. Its suitability for problems with sharp gradients and highly localized features is illustrated by the immersogeometric phase‐field fracture analysis of a human femur bone. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
This article presents a computational approach to the imaging of a partially immersed imperfectly conducting cylinder. An imperfectly conducting cylinder of unknown shape and conductivity scatters the incident transverse magnetic (TM) wave in free space while the scattered field is recorded outside. Based on the boundary condition and the measured scattered field, a set of nonlinear integral equations, and the inverse scattering problem are reformulated into an optimization problem. We use genetic algorithm (GA) to reconstruct the shape and the conductivity of a partially immersed imperfectly conducting cylinder. The genetic algorithm is then used to find out the global extreme solution of the cost function. Numerical results demonstrated that, even when the initial guess is far away from the exact one, good reconstruction can be obtained. In such a case, the gradient‐based methods often get trapped in a local extreme. In addition, the effect of random noise on the reconstruction is investigated. © 2009 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 19, 299–305, 2009  相似文献   

12.
This paper presents equilibrium elements for dual analysis. A traction‐based equilibrium element is proposed in which tractions of an element instead of stresses are chosen as DOFs, and therefore, the interelement continuity and the Neumann boundary balance are directly satisfied. To be solvable, equilibrated tractions with respect to the space of rigid body motion are required for each element. As a result, spurious kinematic modes that may inflict troubles on stress‐based equilibrium elements do not appear in the element because only equilibrium constraints on tractions are required. An admissible stress field is eventually constructed in terms of the equilibrated tractions for the element, and hence, equilibrium finite element procedures can proceed. The element is also generalized to accommodate non‐zero body forces, nonlinear boundary tractions and curved Neumann boundaries. Numerical tests including a single equilibrium element, error estimation of a cantilever beam and an infinite plate with a circular hole are conducted, displaying excellent convergence and effectiveness of the element for error estimation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
In this second part paper, the two-dimensional flow inside an elliptical cylinder is studied in the presence of no-slip boundary conditions. For simplicity, line vortices are assumed to be parallel to the elliptical cylinder axis, all axes in the same plane. The interior boundary value problem is solved in terms of a stream function. Numerical solutions for the flow field are obtained by application of the boundary element method. The streamline patterns are sketched for a number of special cases where the elliptical cylinder is either stationary or rotating about its own axis. In particular, some interesting flow patterns are observed in the parameter space which may have potential significance in studies of various flows. We also investigate the change in streamline topologies as the parameters are varied. Eddies of various sizes and shapes appear depending on the primary vortices and their locations. The results presented may be relevant for a variety of applications including vortex mixing. The analytical closed-form expressions for the single vortex inside an elliptical cylinder and double vortices inside circular a cylinder are found.  相似文献   

14.
In this work, a new comprehensive method has been developed which enables the solution of large, non‐linear motions of rigid bodies in a fluid with a free surface. The application of the modern Eulerian–Lagrangian approach has been translated into an implicit time‐integration formulation, a development which enables the use of larger time steps (where accuracy requirements allow it). Novel features of this project include: (1) an implicit formulation of the rigid‐body motion in a fluid with a free surface valid for both two or three dimensions and several moving bodies; (2) a complete formulation and solution of the initial conditions; (3) a fully consistent (exact) linearization for free surface flows valid for any boundary elements such that optimal convergence properties are obtained when using a Newton–Raphson solver. The proposed framework has been completed with details on implementation issues referring mainly to the computation of the complete initial conditions and the consistent linearization of the formulation for free surface flows. The second part of the paper demonstrates the mathematical and numerical formulation through numerical results simulating large free surface flows and non‐linear fluid structure interaction. The implicit formulation using a fully consistent linearization based on the boundary element method and the generalized trapezoidal rule has been applied to the solution of free surface flows for the evolution of a triangular wave, the generation of tsunamis and the propagation of a wave up to overturning. Fluid–structure interaction examples include the free and forced motion of a circular cylinder and the sway, heave and roll motion of a U‐shaped body in a tank with a flap wave generator. The presented examples demonstrate the applicability and performance of the implicit scheme with consistent linearization. Copyright © 2001 John Wiley & Sons. Ltd.  相似文献   

15.
Asymptotic and exact local radiation boundary conditions (RBC) for the scalar time‐dependent wave equation, first derived by Hagstrom and Hariharan, are reformulated as an auxiliary Cauchy problem for each radial harmonic on a spherical boundary. The reformulation is based on the hierarchy of local boundary operators used by Bayliss and Turkel which satisfy truncations of an asymptotic expansion for each radial harmonic. The residuals of the local operators are determined from the solution of parallel systems of linear first‐order temporal equations. A decomposition into orthogonal transverse modes on the spherical boundary is used so that the residual functions may be computed efficiently and concurrently without altering the local character of the finite element equations. Since the auxiliary functions are based on residuals of an asymptotic expansion, the proposed method has the ability to vary separately the radial and transverse modal orders of the RBC. With the number of equations in the auxiliary Cauchy problem equal to the transverse mode number, this reformulation is exact. In this form, the equivalence with the closely related non‐reflecting boundary condition of Grote and Keller is shown. If fewer equations are used, then the boundary conditions form high‐order accurate asymptotic approximations to the exact condition, with corresponding reduction in work and memory. Numerical studies are performed to assess the accuracy and convergence properties of the exact and asymptotic versions of the RBC. The results demonstrate that the asymptotic formulation has dramatically improved accuracy for time domain simulations compared to standard boundary treatments and improved efficiency over the exact condition. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
In discrete element method simulations, multi‐sphere particle is extensively employed for modeling the geometry shape of non‐spherical particle. A contact detection algorithm for multi‐sphere particles has been developed through two‐level‐grid‐searching. In the first‐level‐grid‐searching, each multi‐sphere particle is represented by a bounding sphere, and global space is partitioned into identical square or cubic cells of size D, the diameter of the greatest bounding sphere. The bounding spheres are mapped into the cells in global space. The candidate particles can be picked out by searching the bounding spheres in the neighbor cells of the bounding sphere for the target particle. In the second‐level‐grid‐searching, a square or cubic local space of size (D + d) is partitioned into identical cells of size d, the diameter of the greatest element sphere. If two bounding spheres of two multi‐sphere particles are overlapped, the contacts occurring between the element spheres in the target multi‐sphere particle and in the candidate multi‐sphere particle are checked. Theoretical analysis and numerical tests on the memory requirement and contact detection time of this algorithm have been performed to verify the efficiency of this algorithm. The results showed that this algorithm can effectively deal with the contact problem for multi‐sphere particles. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
郝栋伟  王文全 《工程力学》2013,30(11):36-41
浸入边界法是模拟大变形柔性弹性结构和粘性流体相互作用的重要数值方法之一。该文有效结合传统的反馈力方法和混合有限元浸入边界方法,对圆柱和方柱绕流后柔性悬臂梁流固耦合振动问题进行数值模拟。其中,固体采用超弹性材料,利用有限单元法求解,流体为不可压缩牛顿流体,使用笛卡尔自适应加密网格,利用有限差分法进行求解。通过数值计算,得到柔性超弹性结构的耦合振动特性和流场动态分布特性,并将计算结果同其他文献计算结果进行比较,验证了该耦合计算方法的可靠性。  相似文献   

18.
The accuracy of global methods such as the differential quadrature (DQ) approach is usually sensitive to the grid point distribution. This paper is to numerically study the effect of grid point distribution on the accuracy of DQ solution for beams and plates. It was found that the stretching of grid towards the boundary can improve the accuracy of DQ solution, especially for coarse meshes. The optimal grid point distribution (corresponding to optimal stretching parameter) depends on the order of derivatives in the boundary condition and the number of grid points used. The optimal grid distribution may not be from the roots of orthogonal polynomials. This differs somewhat from the conventional analysis. This paper also proposes a simple and effective formulation for stretching the grid towards the boundary. The error distribution of derivative approximation is also studied, and used to analyze the effect of grid point distribution on accuracy of numerical solutions. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
为避免复杂贴体网格的生成,该文采用一种隐式直接力浸入边界法模拟复杂边界流动问题。借助求解不可压缩N-S方程组的分步投影方法的思想,来求解基于浸入边界法的耦合系统方程。其中固体边界离散点的作用力密度通过强制满足固体边界的无滑移条件导出,进而通过δ光滑函数对固体壁面附近速度场进行二次修正。在空间离散上,对流项采用QUICK迎风格式,扩散项采用中心差分格式,采用二阶显式Adams-Bashforth法离散时间项。以雷诺数为25、40和300的圆柱绕流为基准数值算例,通过与实验结果和其他文献数值结果的对比,验证数值计算方法的可靠性。  相似文献   

20.
A simple approach is given to the problem of calculating the steady state thermal stresses in a heated circular tube or cylinder. The displacement vector is expressed in terms of four harmonic functions, one of which is directly related to the temperature field. The remaining harmonics are then completely determined by the mechanical boundary conditions. The note concludes with an example illustrating the procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号