首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Among numerous finite element techniques, few models can perfectly (without any numerical problems) break through MacNeal's theorem: any 4‐node, 8‐DOF membrane element will either lock in in‐plane bending or fail to pass a C0 patch test when the element's shape is an isosceles trapezoid. In this paper, a 4‐node plane quadrilateral membrane element is developed following the unsymmetric formulation concept, which means two different sets of interpolation functions for displacement fields are simultaneously used. The first set employs the shape functions of the traditional 4‐node bilinear isoparametric element, while the second set adopts a novel composite coordinate interpolation scheme with analytical trail function method, in which the Cartesian coordinates (x,y) and the second form of quadrilateral area coordinates (QACM‐II) (S,T) are applied together. The resulting element US‐ATFQ4 exhibits amazing performance in rigorous numerical tests. It is insensitive to various serious mesh distortions, free of trapezoidal locking, and can satisfy both the classical first‐order patch test and the second‐order patch test for pure bending. Furthermore, because of usage of the second form of quadrilateral area coordinates (QACM‐II), the new element provides the invariance for the coordinate rotation. It seems that the behaviors of the present model are beyond the well‐known contradiction defined by MacNeal's theorem. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
The unsymmetric FEM is one of the effective techniques for developing finite element models immune to various mesh distortions. However, because of the inherent limitation of the metric shape functions, the resulting element models exhibit rotational frame dependence and interpolation failure under certain conditions. In this paper, by introducing the analytical trial function method used in the hybrid stress‐function element method, an effort was made to naturally eliminate these defects and improve accuracy. The key point of the new strategy is that the monomial terms (the trial functions) in the assumed metric displacement fields are replaced by the fundamental analytical solutions of plane problems. Furthermore, some rational conditions are imposed on the trial functions so that the assumed displacement fields possess fourth‐order completeness in Cartesian coordinates. The resulting element model, denoted by US‐ATFQ8, can still work well when interpolation failure modes for original unsymmetric element occur, and provide the invariance for the coordinate rotation. Numerical results show that the exact solutions for constant strain/stress, pure bending and linear bending problems can be obtained by the new element US‐ATFQ8 using arbitrary severely distorted meshes, and produce more accurate results for other more complicated problems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Among all 3D 8‐node hexahedral solid elements in current finite element library, the ‘best’ one can produce good results for bending problems using coarse regular meshes. However, once the mesh is distorted, the accuracy will drop dramatically. And how to solve this problem is still a challenge that remains outstanding. This paper develops an 8‐node, 24‐DOF (three conventional DOFs per node) hexahedral element based on the virtual work principle, in which two different sets of displacement fields are employed simultaneously to formulate an unsymmetric element stiffness matrix. The first set simply utilizes the formulations of the traditional 8‐node trilinear isoparametric element, while the second set mainly employs the analytical trial functions in terms of 3D oblique coordinates (R, S, T). The resulting element, denoted by US‐ATFH8, contains no adjustable factor and can be used for both isotropic and anisotropic cases. Numerical examples show it can strictly pass both the first‐order (constant stress/strain) patch test and the second‐order patch test for pure bending, remove the volume locking, and provide the invariance for coordinate rotation. Especially, it is insensitive to various severe mesh distortions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
An 8‐node quadrilateral plane finite element is developed based on a novel unsymmetric formulation which is characterized by the use of two sets of shape functions, viz., the compatibility enforcing shape functions and completeness enforcing shape functions. The former are chosen to satisfy exactly the minimum inter‐ as well as intra‐element displacement continuity requirements, while the latter are chosen to satisfy all the (linear and higher order) completeness requirements so as to reproduce exactly a quadratic displacement field. Numerical results from test problems reveal that the new element is indeed capable of reproducing exactly a complete quadratic displacement field under all types of admissible mesh distortions. In this respect, the proposed 8‐node unsymmetric element emerges to be better than the existing symmetric QUAD8, QUAD8/9, QUAD9, QUAD12 and QUAD16 elements, and matches the performance of the quartic element, QUAD25. For test problems involving a cubic or higher order displacement field, the proposed element yields a solution accuracy that is comparable to or better than that of QUAD8, QUAD8/9 and QUAD9 elements. Furthermore, the element maintains a good accuracy even with the reduced 2× 2 numerical integration. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
The unsymmetric finite element method is a promising technique to produce distortion‐immune finite elements. In this work, a simple but robust 4‐node 12‐DOF unsymmetric quadrilateral membrane element is formulated. The test function of this new element is determined by a concise isoparametric‐based displacement field that is enriched by the Allman‐type drilling degrees of freedom. Meanwhile, a rational stress field, instead of the displacement one in the original unsymmetric formulation, is directly adopted to be the element's trial function. This stress field is obtained based on the analytical solutions of the plane stress/strain problem and the quasi‐conforming technique. Thus, it can a priori satisfy related governing equations. Numerical tests show that the presented new unsymmetric element, named as US‐Q4θ, exhibits excellent capabilities in predicting results of both displacement and stress, in most cases, superior to other existing 4‐node element models. In particular, it can still work very well in severely distorted meshes even when the element shape deteriorates into concave quadrangle or degenerated triangle.  相似文献   

6.
A recent distortion-tolerant unsymmetric 8-node hexahedral solid-shell element US-ATFHS8, which takes the analytical solutions of linear elasticity as the trial functions, is successfully extended to geometric nonlinear analysis. This extension is based on the corotational (CR) approach due to its simplicity and high efficiency, especially for geometric nonlinear analysis where the strain is still small. Based on the assumption that the analytical trial functions can properly work in each increment during the nonlinear analysis, the incremental corotational formulations of the nonlinear solid-shell element US-ATFHS8 are derived within the updated Lagrangian (UL) framework, in which an appropriate updated strategy for linear analytical trial functions is proposed. Numerical examples show that the present nonlinear element US-ATFHS8 possesses excellent performance for various rigorous tests no matter whether regular or distorted mesh is used. Especially, it even performs well in some situations that other conventional elements cannot work.  相似文献   

7.
Recent studies show that the unsymmetric finite element method exhibits excellent performance when the discretized meshes are severely distorted. In this article, a new unsymmetric 4-noded quadrilateral plane element is presented using both incompatible test functions and trial functions. Five internal nodes, one at the elemental central and four at the middle sides, are added to ensure the quadratic completeness of the elemental displacement field. Thereafter, the total nine nodes are applied to form the shape functions of trial function, and the Lagrange interpolation functions are adopted as the incompatible test shape functions of the internal nodes. The incompatible test displacements are then revised to satisfy the patch test. Numerical tests show that the present element can provide very good numerical accuracy with badly distorted meshes. Unlike the existing unsymmetric four-node plane elements in which the analytical stress fields are employed, the present element can be extended to boundary value problems of any differential equations with no difficulties.  相似文献   

8.
A recent unsymmetric 4-node, 8-DOF plane finite element US-ATFQ4 is generalized to hyperelastic finite deformation analysis. Since the trial functions of US-ATFQ4 contain the homogenous closed analytical solutions of governing equations for linear elasticity, the key of the proposed strategy is how to deal with these linear analytical trial functions (ATFs) during the hyperelastic finite deformation analysis. Assuming that the ATFs can properly work in each increment, an algorithm for updating the deformation gradient interpolated by ATFs is designed. Furthermore, the update of the corresponding ATFs referred to current configuration is discussed with regard to the hyperelastic material model, and a specified model, neo-Hookean model, is employed to verify the present formulation of US-ATFQ4 for hyperelastic finite deformation analysis. Various examples show that the present formulation not only remain the high accuracy and mesh distortion tolerance in the geometrically nonlinear problems, but also possess excellent performance in the compressible or quasi-incompressible hyperelastic finite deformation problems where the strain is large.  相似文献   

9.
This paper presents a distortion resistant 20‐node hexahedron element that employs two different sets of shape functions for the trial and test functions. The formulation seeks to satisfy the continuity and completeness requirements by exploiting the intrinsic properties of these two sets of shape functions. Several test problems are used to assess the performance of the element under various mesh distortions. The ability of the proposed as well as the classical 20‐node element to maintain solution accuracy under severe mesh distortions has been studied. The proposed element exhibits a very high tolerance to mesh distortions. In particular, for problems involving linear and quadratic displacement fields, the element is capable of reproducing exact solution under all admissible geometrical distortions of the mesh. For test problems involving higher‐order displacement fields, the performance of the present element is in general better than that of the classical element. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, a new 4‐node hybrid stress element is proposed using a node‐based smoothing technique of tetrahedral mesh. The conditions for hybrid stress field required are summarized, and the field should be continuous for better performance of a constant‐strain tetrahedral element. Nodal stress is approximated by the node‐based smoothing technique, and the stress field is interpolated with standard shape functions. This stress field is linear within each element and continuous across elements. The stress field is expressed by nodal displacements and no additional variables. The element stiffness matrix is calculated using the Hellinger‐Reissner functional, which guarantees the strain field from displacement field to be equal to that from the stress field in a weak sense. The performance of the proposed element is verified by through several numerical examples.  相似文献   

11.
This paper presents eight‐node solid‐shell elements for geometric non‐linear analysis of elastic shells. To subdue shear, trapezoidal and thickness locking, the assumed natural strain method and an ad hoc modified generalized laminate stiffness matrix are employed. A selectively reduced integrated element is formulated with its membrane and bending shear strain components taken to be constant and equal to the ones evaluated at the element centroid. With the generalized stresses arising from the modified generalized laminate stiffness matrix assumed to be independent from the ones obtained from the displacement, an extended Hellinger–Reissner functional can be derived. By choosing the assumed generalized stresses similar to the assumed stresses of a previous solid element, a hybrid‐stress solid‐shell element is formulated. Commonly employed geometric non‐linear homogeneous and laminated shell problems are attempted and our results are close to those of other state‐of‐the‐art elements. Moreover, the hybrid‐stress element converges more readily than the selectively reduced integrated element in all benchmark problems. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
The recently published ‘FE–Meshfree’ QUAD4 element is extended to geometrical non‐linear analysis. The shape functions for this element are obtained by combining meshfree and finite element shape functions. The concept of partition of unity (PU) is employed for the purpose. The new shape functions inherit their higher order completeness properties from the meshfree shape functions and the mesh‐distortion tolerant compatibility properties from the finite element (FE) shape functions. Updated Lagrangian formulation is adopted for the non‐linear solution. Several numerical example problems are solved and the performance of the element is compared with that of the well‐known Q4, QM6 and Q8 elements. The results show that, for regular meshes, the performance of the element is comparable to that of QM6 and Q8 elements, and superior to that of Q4 element. For distorted meshes, the present element has better mesh‐distortion tolerance than Q4, QM6 and Q8 elements. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents the finite rotation exact geometry (EG) 12‐node solid‐shell element with 36 displacement degrees of freedom. The term ‘EG’ reflects the fact that coefficients of the first and second fundamental forms of the reference surface and Christoffel symbols are taken exactly at each element node. The finite element formulation developed is based on the 9‐parameter shell model by employing a new concept of sampling surfaces (S‐surfaces) inside the shell body. We introduce three S‐surfaces, namely, bottom, middle and top, and choose nine displacements of these surfaces as fundamental shell unknowns. Such choice allows one to represent the finite rotation higher order EG solid‐shell element formulation in a very compact form and to derive the strain–displacement relationships, which are objective, that is, invariant under arbitrarily large rigid‐body shell motions in convected curvilinear coordinates. The tangent stiffness matrix is evaluated by using 3D analytical integration and the explicit presentation of this matrix is given. The latter is unusual for the non‐linear EG shell element formulation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
15.
16.
A novel strategy for developing low‐order membrane elements with analytical element stiffness matrices is proposed. First, some complete low‐order basic analytical solutions for plane stress problems are given in terms of the new quadrilateral area coordinates method (QACM‐II). Then, these solutions are taken as the trial functions for developing new membrane elements. Thus, the interpolation formulae for displacement fields naturally possess second‐order completeness in physical space (Cartesian coordinates). Finally, by introducing nodal conforming conditions, new 4‐node and 5‐node membrane elements with analytical element stiffness matrices are successfully constructed. The resulting models, denoted as QAC‐ATF4 and QAC‐ATF5, have high computational efficiency since the element stiffness matrices are formulated explicitly and no internal parameter is added. These two elements exhibit excellent performance in various bending problems with mesh distortion. It is demonstrated that the proposed strategy possesses advantages of both the analytical and the discrete method, and the QACM‐II is a powerful tool for constructing high‐performance quadrilateral finite element models. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The present study is a continuation of our previous work with the aim to reduce problems caused by standard higher order elements in contact problems. The difficulties can be attributed to the inherent property of the Galerkin method which gives uneven distributions of nodal forces resulting in oscillating contact pressures. The proposed remedy is use of piece‐wise linear weight functions. The methods to establish stiffness and/or mass matrix for 8‐node quadrilateral element in 2D are presented, i.e. the condensing and direct procedures. The energy and nodal displacement error norms are also checked to establish the convergence ratio. Interpretation of calculated contact pressures is discussed. Two new 2D 8‐node quadrilateral elements, QUAD8C and QUAD8D, are derived and tested in many examples, which show their good performance in contact problems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
The development of eight‐node arbitrary quadrilateral membrane elements with drilling degrees of freedom is presented using the compatible displacement interpolation within the element. The element is considered to develop specifically for analysing the in‐plane stiffness of thick floor plates in building systems, particularly the transfer plates in tall buildings as well as pile caps. With a new set of shape functions and following the displacement‐based element procedure, the element stiffness and force vector are derived and nodal displacements are obtained after solving the simultaneous equations; the element stresses are then determined. A wide range of patch tests is conducted to evaluate the consistency and stability of the proposed element. The test results show very good agreement with the exact solutions of the beam theory. Numerical investigations are carried out, showing that the analyses using the proposed elements provide better results than those from the existing methods. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Digital imaging technologies such as X‐ray scans and ultrasound provide a convenient and non‐invasive way to capture high‐resolution images. The colour intensity of digital images provides information on the geometrical features and material distribution which can be utilised for stress analysis. The proposed approach employs an automatic and robust algorithm to generate quadtree (2D) or octree (3D) meshes from digital images. The use of polygonal elements (2D) or polyhedral elements (3D) constructed by the scaled boundary finite element method avoids the issue of hanging nodes (mesh incompatibility) commonly encountered by finite elements on quadtree or octree meshes. The computational effort is reduced by considering the small number of cell patterns occurring in a quadtree or an octree mesh. Examples with analytical solutions in 2D and 3D are provided to show the validity of the approach. Other examples including the analysis of 2D and 3D microstructures of concrete specimens as well as of a domain containing multiple spherical holes are presented to demonstrate the versatility and the simplicity of the proposed technique. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
A formulation of a quadrilateral finite element with embedded strong discontinuity, suitable for the material failure numerical analysis of plane stress solids, is presented. The kinematics of standard finite element is enhanced by displacement jumps that vary linearly along the embedded discontinuity line. They are described by four kinematic parameters that are related to four element separation modes. The modes are designed for no stress transfer over the discontinuity line at its fully softened (opened) state. As for the material, the bulk of the element is assumed to be elastic, and the softening plasticity, in terms of discontinuity tractions and displacement jumps, is assumed along the discontinuity line. The bulk stresses are described by the optimal five‐parameter interpolation. The combination of stress interpolation and enhanced kinematics yields simple form of the element stiffness matrix. To achieve efficient implementation, the stiffness matrix is statically condensed for both the enhanced kinematic parameters and the stress parameters. In a set of numerical examples, the performance of the derived element is illustrated. Obtained results are compared with some other representative embedded discontinuity quadrilateral elements (displacement‐based and enhanced assumed strain based). It turns out that the element performs very well. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号