首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Herein, enhancement of dye‐sensitized solar cell (DSC) performance is reported by combining the merits of the dye loading of TiO2 nanoparticles and light scattering, straight carrier transport path, and efficient electron collection efficiency of TiO2 cubes. We fabricate DSC devices with various arrangement styles and compositions of the electrodes in the forms of monolayer and double layer films. For this purpose, the solvothermal synthesized TiO2 cubic particles (100‐600 nm) are employed as the scattering layer, whereas TiO2 nanoparticles (15‐30 nm) synthesized via a combination of solvothermal and sol‐gel routes are used as the active layer of devices. We improve the photovoltaic characteristics of DSCs by two mechanisms. First, the light harvesting of DSC devices made of nanoparticles is improved by controlling the thickness of monolayer films, reaching the highest efficiency of 7.0%. Second, the light scattering and electron collection efficiency are enhanced by controlling the composition of double layer films composed of mixtures of TiO2 nanoparticles and cubes, obtaining the maximum efficiency of 8.21%. The enhancements are attributed to balance between charge transfer resistance and charge recombination of photo‐generated electrons as well as dye loading and light scattering.  相似文献   

2.
A kind of wire‐shaped, dye‐sensitized solar cell (WDSSC) composed of poly(vinyl alcohol) (PVA) gel electrolyte and filament‐formed electrodes of titanium and platinum was prepared, and its photovoltaic performance was analyzed with the variations in the dimensions of the electrodes and cells. The dimensions of the wire‐shaped cell were adjusted through the thickness of the TiO2 layer, the amount of PVA gel electrolyte, and length of the Pt filament. The dominant parameters determining the cell performance were mainly analyzed with the results from the various scanning electron microscopy images and fitted plots of electrochemical impedance spectroscopy. Although the conversion efficiencies of the fabricated WDSSCs were relatively lower than those of the conventional dye‐sensitized solar cells, this development should provide important guiding directions for the design of similar WDSSCs with higher efficiencies. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43439.  相似文献   

3.
Jing Zhang 《Electrochimica acta》2008,53(16):5415-5422
A PEO/P(VDF-HFP) composite polymer electrolyte was modified by different amounts of NH2-end functional silane (3-amonopropyltriethoxysilane, APTS). Fourier transform infrared (FT-IR), X-ray diffraction (XRD) and differential scanning calorimetry (DSC) were carried out to examine the configuration changes of the polymer electrolyte. The newly formed Si-O-Si network and interactions influenced the ionic conductivity of the APTS-modified polymer electrolyte and also enhanced the connection of the polymer electrolyte with the electrodes of the dye sensitized solar cells (DSSCs). The cyclic voltammograms and electrochemical impedance measurements indicated that the APTS deprotonated the TiO2 photoanode surface and negatively changed the Fermi energy level and the conduction band edge to the vacuum level. This effectively reduced the interface recombination in the DSSC and improved the open circuit voltage. With moderate APTS content (0.1 M) modification, the DSSC exhibited a 58 mV improvement of photovoltage and an improved performance of 5.08% compared with 3.74% of the original DSSC.  相似文献   

4.
Cross-linked gel polymer electrolytes containing aluminum oxide nanoparticles are prepared by in situ chemical cross-linking after injection of the gel precursor into the dye-sensitized solar cell (DSSC). This makes it possible to directly solidify the electrolyte in the cell and maintain good interfacial contacts between the electrolyte and the electrodes without suffering loss of performance in the DSSC. These gel polymer electrolytes exhibit high ionic conductivity and favorable charge transfer reaction at the interfaces of electrodes and electrolyte. The quasi-solid-state DSSC assembled with optimized gel polymer electrolyte exhibited remarkably high conversion efficiency, 6.34% at 100 mW cm−2, and better long-term stability, as compared to the DSSC with liquid electrolyte.  相似文献   

5.
Thermal storage of lithiated graphite electrodes has been performed between 40 and 90 °C for 8 h to 3 weeks. The results were compared for two separators: Celgard 2402 and a microporous PVdF membrane. The effects of storage on the capacity losses have been discussed with respect to the passivation film on the graphite electrodes in contact with the electrolyte solution EC:DMC:DEC (2:2:1)-1 M LiPF6. The capacity loss shows a thermally activated character, which has been related to transformations of the passivation film at moderate temperatures. At higher temperatures, reaction of the intercalated lithium takes place, controlled by Li+-ion diffusion. DSC measurements were performed on passivated and lithiated graphite electrodes. Two peaks could be distinguished. An effect of the elevated temperature storage on the intensity and onset temperature of the first peak in DSC is evidenced. This peak could be attributed to the transformation of the passivation film. The second peak is due to the diffusion of lithium ions and the subsequent reaction with the liquid electrolyte.The effect of washing the electrode with DMC was thoroughly investigated. Our results allowed to attribute the transformation of the passivation film upon DSC analysis to a reaction taking place in the presence of LiPF6.  相似文献   

6.
This in situ soft X‐ray scanning microscopy electrochemical study of model proton exchange cathodic and anodic nano‐fuel cells is exploring the evolving structure and chemical composition of key cell components represented by Au and Fe electrodes in contact with Nafion‐ionic liquid composite electrolyte containing Pt black catalyst particles. Morphological and chemical changes of the electrodes as well as the chemical state and fate of the Fe species released into the electrolyte are monitored in short circuit and with applied cathodic or anodic polarization. The in situ X‐ray absorption images of the cathodic cell fed with 2.5 × 10–5 mbar O2 have revealed corrosion‐induced morphology changes in the Fe electrode, being more pronounced in the vicinity of Pt‐black particles, and deposition of the Fe species released into the electrolyte, onto the intact Au counter electrode upon cathodic polarization. The Fe electrodes of the anodic cell containing NaBH4 in the electrolyte appear relatively more corrosion resistant. The Fe L3 absorption spectra taken in different locations within the Fe electrode have shown lateral variations in the relative ratio between Fe2+ and Fe3&4+ oxidation states, whereas the Fe species released into the RTIL electrolyte are only in the high Fe3&4+ oxidation states.  相似文献   

7.
Electrical impedance spectroscopy (EIS) was applied in order to investigate electrochemical nanocrystalline TiO2 dye solar cells (DSC). Typically, three characteristic frequency peaks were observed in the spectra. These frequency peaks could be explained by variations of cell parameters and by comparison with intensity-modulated photovoltage spectroscopy (IMVS). It was shown that the low-frequency peak (in the mHz range) corresponds to the Nernstian diffusion within the electrolyte, while the middle-frequency peak (in the 10-100 Hz range) reflects the properties of the photoinjected electrons within the TiO2. The high-frequency peak (in the kHz range) corresponds to the charge-transfer at the platinum counter electrode. For a detailed analysis of the spectra, a model was developed which allows the evaluation of EIS spectra, measured under bias illumination and under open-circuit conditions. The influence of cell parameters such as the TiO2 layer thickness, cell thickness, charge-transfer resistance of the platinum counter electrode, and the lifetime of the photoinjected electrons, on the impedance spectra was studied both experimentally and theoretically. Finally, it is shown that EIS is a measurement method suited well for the investigation of the long-term stability of DSC, as changes of the inner cell parameters can be revealed.  相似文献   

8.
Thin films of WOx and Pt on WOx were evaporated onto the microporous layer of a gas diffusion layer (GDL) and served as model electrodes in the polymer electrolyte fuel cell (PEFC) as well as in liquid electrolyte measurements. In order to study the effects of introducing WOx in PEFC electrodes, precise amounts of WOx (films ranging from 0 to 40 nm) with or without a top layer of Pt (3 nm) were prepared. The structure of the thin-film model electrodes was characterized by scanning electron microscopy and X-ray photoelectron spectroscopy prior to the electrochemical investigations. The electrodes were analyzed by cyclic voltammetry and the electrocatalytic activity for hydrogen oxidation reaction (HOR) and CO oxidation was examined. The impact of Nafion in the electrode structure was examined by comparing samples with and without Nafion solution sprayed onto the electrode. Fuel cell measurements showed an increased amount of hydrogen tungsten bronzes formed for increasing WOx thicknesses and that Pt affected the intercalation/deintercalation process, but not the total amount of bronzes. The oxidation of pre-adsorbed CO was shifted to lower potentials for WOx containing electrodes, suggesting that Pt-WOx is a more CO-tolerant catalyst than Pt. For the HOR, Pt on thicker films of WOx showed an increased limiting current, most likely originating from the increased electrochemically active surface area due to proton conductivity and hydrogen permeability in the WOx film. From measurements in liquid electrolyte it was seen that the system behaved very differently compared to the fuel cell measurements. This exemplifies the large differences between the liquid electrolyte and fuel cell systems. The thin-film model electrodes are shown to be a very useful tool to study the effects of introducing new materials in the PEFC catalysts. The fact that a variety of different measurements can be performed with the same electrode structure is a particular strength.  相似文献   

9.
The influence of electrolyte additives on the thermal stability of graphite anodes in a Li-ion battery has been investigated. The selected additives are: ethyltriacetoxysilane, 1,3-benzoldioxole, tetra(ethylene glycol)dimethylether and vinylene carbonate. These compounds were added in 4% to an electrolyte consisting of 1M LiBF4 ethylene carbonate (EC)/diethyl carbonate (DEC) solvent mixture. Differential scanning calorimetry (DSC) was used to investigate the thermal stability. The electrochemical performance was investigated by galvanostatic cycling and the formed solid electrolyte interphase (SEI) was characterised by photoelectron spectroscopy (PES) using Al Kα and synchrotron radiation (SR). The onset temperature for the thermally activated reactions was found to increase for all electrodes cycled with additives compared to electrodes cycled without additives. The onset temperature increased in the order: no additive < tetra(ethylene glycol)dimethyl ether < 1,3-benzoldioxole < ethyl-triacetoxysilane < vinylene carbonate. Features in the PES spectra found to be associated with high onset temperatures for thermally activated reactions are: (i) no discernible graphite peak, (ii) small amount of salt species of the type LiF and LixBFyOz and (iii) larger amounts of organic compounds preferably with a high oxygen content.  相似文献   

10.
In this study the efficiency of electrochemical oxidation of aromatic pollutants, such as reactive dyes, at boron-doped diamond on silicon (Si/BDD) electrodes was investigated. The level of [B]/[C] ratio which is effective for the degradation and mineralization of selected aromatic pollutants, and the impact of [B]/[C] ratio on the crystalline structure, layer conductivity and relative sp3/sp2 coefficient of a BDD electrode were also studied. The thin film microcrystalline electrodes have been deposited on highly doped silicon substrates via MW PE CVD. Si/BDD electrodes were synthesized for different [B]/[C] ratios of the gas phase. Mechanical and chemical stability of the electrodes was achieved for the microcrystalline layer with relatively high sp3/sp2 band ratio. Layer morphology and crystallite size distribution were analyzed by SEM. The resistivity of BDD electrodes was studied using four-point probe measurements. The relative sp3/sp2 band ratios were determined by deconvolution of Raman and X-ray photoelectron spectra. The efficiency of degradation and mineralization of the reactive azo dye rubin F-2B was estimated based on the absorbance measurements at 545 nm. The influence of commonly used electrolytes NaCl and Na2SO4 on the dye removal efficiency was also investigated. The results suggest that, in general, the oxidation occurs indirectly at the anode through generation of hydroxyl radicals •OH, which react with the dye in a very fast and non-selective manner. In NaCl electrolyte the dye was also decomposed by more selective, active chlorine species (Cl2, HOCl). However the efficiency of this process in BDD depended on the electrode's doping level. Higher amounts of dopant on the surface of BDD resulted in the higher efficiency of dye removal in both electrolytes.  相似文献   

11.
There are few reports on photoelectric conversion efficiency using naturally-occurring dyes for dye-sensitized solar cells (DSSC). This is because the matching with an excited electronic level of naturally-occurring dye to the conduction band of semiconductor is problematic; the excited electrons are easily relaxed to the steady state with fluorescence or heat emission. We examined the fluorescence inhibition effect of a self-assembled photonic crystal using Chlorine e6 dye. Chlorine e6 is derived from chlorophyll and has a long excited electron lifetime. We prepared TiO2 inverse opals with various particle sizes by liquid phase deposition and described their effect on DSSCs with regard to structural, optical and electrochemical properties. In addition, we explored the implications of fluorescence lifetime measurements relative to the photonic band diagram and the amount of adsorbed dye. Although the main factor affecting the external photoelectric conversion efficiency was the diffusion resistance of the electrolyte and the contact resistance between TiO2 interfaces, the possibility that the dye fluorescence lifetime, i.e. the photonic band structure, can affect the internal quantum efficiency per one dye molecule was also investigated.  相似文献   

12.
The overall efficiency of the light-induced charge separation in dye-sensitized solar cells depends on the kinetic competition between back electron transfer and dye regeneration processes by a redox electrolyte. In a previous study, the reduction of the intermittently formed photo-oxidized dye molecules by iodide ions in the electrolyte phase was investigated using the feedback mode of a scanning electrochemical microscope (SECM) and a quantitative model had been derived. Here we provide a more thorough experimental verification of this model by variation of the excitation wavelength, light intensities and mediator concentrations. Nanoporous ZnO/Eosin Y films prepared by self-assembly were used as model electrodes and were used with an iodide/triiodide electrolyte. The experimentally found effective rate constants could be related to the rate constant for the reaction of the dissolved donor with photo-oxidized Eosin Y bound to ZnO and the absorption spectrum of the dye and confirmed the assumption made in the derivation of the model. For the regeneration process of Eosin Y, a rate constant of kox with different light emitting diodes and light intensities is determined.  相似文献   

13.
A positive-electrolyte-negative (PEN) assembly solid oxide fuel cell (SOFC) with a thin electrolyte film for intermediate temperature operation was fabricated. Instead of the traditional screen-printing method, both anode and cathode catalysts were pressed simultaneously and formed with the fabrication of nano-composite electrolyte by press method. This design offered some advantageous configurations that diminished ohmic resistance between electrolyte and electrodes. It also increased the proton-conducting rate and improved the performance of SOFCs due to the reduction of membrane thickness and good contact between electrolyte and electrodes. The fabricated PEN cell generated electricity between 600°C and 680°C using H2S as fuel feed and air as oxidant. Maximum power densities 40 mW·cm−2 and 130 mW·cm−2 for the PEN configuration with a Mo-Ni-S-based composite anode, nano-composite electrolyte (Li2SO4+Al2O3) film and a NiO-based composite cathode were achieved at 600°C and 680°C, respectively.  相似文献   

14.
1-Butyl-1-methylpyrrolidinium hexafluorophosphate (BMP-PF6) was used as a flame-retarding additive in the liquid electrolyte, and the influence of BMP-PF6 content on cycling performance and thermal properties of lithium-ion batteries was investigated. Self-extinguishing time and DSC studies demonstrated that the addition of BMP-PF6 to the electrolyte provided a significant suppression in the flammability of the electrolyte and an improvement in the thermal stability of the cell. The optimum BMP-PF6 content in the electrolyte was found to be 10 wt.% for improving safety without degrading cycling performance of the cell.  相似文献   

15.
A polymer gel electrolyte with ionic conductivity of 5.11 mS cm−1 was prepared by using poly (acrylonitrile‐co‐styrene) as polymer matrix, acetonitrile and tetrahydrofuran as binary organic mixture solvent, NaI + I2 as electrolyte, graphite powder and 1‐methylimidazole as additives. The components ratio of the polymer gel electrolyte was optimized, and the influence of the components and temperature on the ionic conductivity of the polymer gel electrolyte and photoelectronic properties of dye sensitized solar cell were investigated. On the basis of the polymer gel electrolyte with the optimized conditions, a quasi‐solid‐state dye‐sensitized solar cell was fabricated and its light‐ to‐electricity energy conversion efficiency of 3.25% was achieved under irradiation of 100 mW cm−2. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

16.
Ruthenium–platinum binary oxides [(Ru + Pt)O x ] were coated on titanium substrates by thermal decomposition. The surface morphologies and elemental analyses of these electrodes were examined by means of scanning electron microscopy. The electrochemical behaviour was characterized by cyclic voltammetry (CV) and linear scanning voltammetry (LSV). The effects of electrolyte conditions on the current efficiency (CE) of hypochlorite production on binary (Ru + Pt)O x electrodes and the treatment of a high salt-containing dye wastewater using this hypochlorite were also investigated. The highest CE for hypochlorite production occurred on the RP1 (20 mol% Pt in precursor) electrode. The major factors influencing CE for hypochlorite production were the electrolyte flow rate, current density and chloride ion (C1) concentration. The RP1 electrode exhibited the best removal of organics and chromophoric groups in the dye wastewater. On this electrode, better removal of organics and chromophoric groups was obtained at 300 mA cm–2. The colour of black–red dye wastewater became light yellow when a charge of 13.2 A h was passed while the COD of the wastewater decreased from 10 500 to 1250 mg L–1.  相似文献   

17.
In this present work, isomers like 2- and 4-Mercapto pyridine were used as dopants (additives) in Poly (ethylene oxide) based polymer electrolyte and their effects in dye-sensitized solar cells (DSC) have been investigated. Due to the coordinating and plasticizing effects of Mercapto pyridine, enhanced ionic conductivity and reduced crystallinity of PEO polymer electrolyte accompanied by a better penetration of the same into the dye coated nanocrystalline TiO2 in order to have better performances were achieved. The 2-Mercapto pyridine doped PEO (E) shows comparatively better performance than 4-Mercapto pyridine doped one (F), is due to the fact that the π-electron donicity of 2-Mercapto pyridine is greater. These results suggests that the electron donating capacity of 2-Mercapto pyridine and 4-Mercapto pyridine would influence the interaction of nanocrystalline TiO2 electrode and I/I3 redox couple leading to radical changes in the cell performance.  相似文献   

18.
The electrical conduction and dielectric (capacitive) properties of electrolyte-filled carbon paste electrochemical electrodes are reported, with the carbon, electrolyte (15% H2SO4), carbon–electrolyte interface and carbon–contact(metal) interface contributions fully decoupled for the first time. Without full decoupling and with the carbon contributions neglected, the carbon–electrolyte specific interfacial capacitance would be much over-estimated and the carbon–electrolyte interfacial resistivity would be much under-estimated. The carbons and electrolyte are comparable in both dielectric constant and resistivity. The specific contact capacitance is increased and the contact resistivity is decreased by adding the electrolyte to a carbon. The electrolyte is more effective than water in enhancing carbon–liquid and paste–contact interfaces. Conductivity is attractive for batteries and supercapacitors; strong dielectric properties are attractive for supercapacitors but not batteries. Exfoliated graphite provides handleability and excellent volumetric and interfacial conductivities. It gives low carbon dielectric constant, but contributes to the interfacial capacitances. Activated graphite nanoplatelet (GNP) gives high carbon and paste dielectric constants and high specific contact capacitance. Activated carbon gives poor volumetric and interfacial conductivities. Exfoliated graphite is even better than carbon black for batteries; GNP is even better than activated carbon for supercapacitors; an exfoliated-graphite/GNP mixture is suitable for both; natural graphite is not competitive for either.  相似文献   

19.
Two kinds of nongraphitizable carbon were applied as active materials of negative electrodes in Li-ion batteries. The thermal properties of cycled electrodes mixed with or without commercial 1 M LiPF6/EC–DMC electrolyte were investigated by TG–DSC from room temperature to 400 °C at a heating rate of 5 °C/min. Both kinds of lithiated electrodes showed exothermic peaks at about 310 °C due to decomposition of SEI by lithiated carbon powder. For the mixture of delithiated electrodes and electrolytes, the heat generation was attributed mainly to thermal decomposition of the electrolyte at about 280 °C. But for the mixture of lithiated electrodes and electrolytes, thermal risk mainly came from the reaction between original/secondary SEI and intercalated Li ions, which caused drastic heat generation at about 285 °C. Moreover, the thermal behavior of the mixture of cycled electrodes and electrolytes was directly related to the ratio between electrodes and coexisting electrolytes. When the ratio between electrodes and electrolytes was suitable, an endothermic reaction between SEI and electrolytes became dominant and depressed other exothermic heat, which reduced the thermal risk of the mixture of electrodes and electrolytes at elevated temperature.  相似文献   

20.
The sodium chlorate production process is run in large electrolysers where electrolyte flows between the electrodes due to the natural convection from hydrogen gas evolution. A brief review is given of electrolytic gas generation at electrode surfaces and of previous studies. A small, enclosed rectangular cell was used to electrolyse both a Na2SO4 and a NaCl/NaClO3 solution, in order to produce hydrogen and oxygen bubbles at one or both of the electrodes. The two-phase flow regimes, bubble sizes, gas fraction and fluid velocities between the electrodes were investigated using microscope enhanced visualisation, laser doppler velocimetry and particle image velocimetry. The practicality of each of the measuring methods is analysed and it is concluded that laser doppler velocimetry is the most robust method for measuring such systems. The experimental results are discussed and conclusions are drawn relating gas evolution to the hydrodynamics of electrolyte flowing through a narrow vertical channel. The major conclusions are that fluid flow in systems with bubble evolution can transform from a laminar to a turbulent behaviour, throughout the length of the cell, and that both turbulence and laminar behaviour can exist across the cell channel at the same horizontal plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号