首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Numerical analysis of the total energy release of surrounding rocks excavated by drill-and-blast(D&B) method and tunnel boring machine(TBM) method is presented in the paper.The stability of deep tunnels during excavation in terms of energy release is also discussed.The simulation results reveal that energy release during blasting excavation is a dynamic process.An intense dynamic effect is captured at large excavation footage.The magnitude of energy release during full-face excavation with D&B method is higher than that with TBM method under the same conditions.The energy release rate(ERR) and speed(ERS) also have similar trends.Therefore,the rockbursts in tunnels excavated by D&B method are frequently encountered and more intensive than those by TBM method.Since the space after tunnel face is occupied by the backup system of TBM,prevention and control of rockbursts are more difficult.Thus,rockbursts in tunnels excavated by TBM method with the same intensity are more harmful than those in tunnels by D&B method.Reducing tunneling rate of TBM seems to be a good means to decrease ERR and risk of rockburst.The rockbursts observed during excavation of headrace tunnels at Jinping II hydropower station in West China confirm the analytical results obtained in this paper.  相似文献   

2.
Studies on the evolution process of rockbursts in deep tunnels   总被引:2,自引:0,他引:2  
This paper focuses on the evolution processes of different types of rockbursts occurring in deep tunnels. A series of laboratory tests and in-situ monitoring in deep tunnels excavated by tunnel boring machine (TBM) and drill-and-blast (D&B) method have been conducted to understand the mechanisms and processes of the evolution of different types of rockbursts, including strain rockburst, strain-structure slip rockburst, immediate rockburst and time-delayed rockburst. Three different risk assessment methods are proposed to evaluate the intensity and potential failure depth of rockbursts. These methods can be applied before excavation and the results can be updated according to the real-time information during excavation. Two micro-seismicity based real-time warning systems have been established for predicting various intensities of rockbursts, such as slight, moderate, intensive and extremely intensive rockbursts. Meanwhile, the probability and intensity of the rockburst are also given. The strategy for excavation and support design has been suggested for various intensities of rockbursts before excavation. The strategy for dynamic control of the rockburst evolution process is also proposed according to the monitoring results. The methodology has been successfully applied to rockburst risk reduction for deep tunnels at Jinping II hydropower project. The results have illustrated the applicability of the proposed methodology and techniques concerning rockbursts.  相似文献   

3.
Monitoring and prediction of rockburst remain to be worldwide challenges in geotechnical engineering.In hydropower,transportation and other engineering fields in China,more deep,long and large tunnels have been under construction in recent years and underground caverns are more evidently featured by "long,large,deep and in group",which bring in many problems associated with rock mechanics problems at great depth,especially rockburst.Rockbursts lead to damages to not only underground structures and equipments but also personnel safety.It has been a major technical bottleneck in future deep underground engineering in China.In this paper,compared with earthquake prediction,the feasibility in principle of monitoring and prediction of rockbursts is discussed,considering the source zones,development cycle and scale.The authors think the feasibility of rockburst prediction can be understood in three aspects:(1) the heterogeneity of rock is the main reason for the existence of rockburst precursors;(2) deformation localization is the intrinsic cause of rockburst;and(3) the interaction between target rock mass and its surrounding rock mass is the external cause of rockburst.As an engineering practice,the application of microseismic monitoring techniques during tunnel construction of Jinping II Hydropower Station was reported.It is found that precursory microcracking exists prior to most rockbursts,which could be captured by the microseismic monitoring system.The stress concentration is evident near structural discontinuities(such as faults or joints),which shall be the focus of rockburst monitoring.It is concluded that,by integrating the microseismic monitoring and the rock failure process simulation,the feasibility of rockburst prediction is expected to be enhanced.  相似文献   

4.
The amount of tunnels excavated along stratified/sedimentary rock masses in Quangninh coal mine area,Vietnam, is gradually increasing. Rock mass in Quangninh is characterized by beddings between rock layers. The behavior of stratified rock masses surrounding the tunnels depends on both the intact rock and the beddings between rock layers. The main characteristics of stratified rock masses that need to be considered are their heterogeneity and anisotropy. Depending on the dip angle of rock layers, movements and failure zones developed surrounding the tunnels can be asymmetrical over the vertical axis of tunnel. This asymmetry causes adverse behaviors of the tunnel structures. The objective of this study is to highlight convergences and yielded zones developed in rock masses surrounding noncircular tunnels in Quangninh coal mine area using a finite element method. The presence of bedding joints is explicitly simulated. The numerical results indicated that with the increase in dip angle of bedding joints, the stress asymmetry over the tunnel vertical axis increases. It gradually leads to an asymmetry of the failure zone surrounding the tunnel. An increase of rock mass quality means a decrease of rock mass sensitivity to the discontinuities. In addition,a dip angle of the bedding joints of approximately 45° could be considered as the critical angle at which the rock mass mechanism changes between sliding and bending.  相似文献   

5.
Jinping Ⅱ hydropower station is located in a high in-situ stress region in Southwest China. During the excavations of the transportation and drainage tunnels, more than 460 rockburst events were recorded in the transportation tunnel and 110 in the drainage tunnel, which has a serious and negative influence on the tunnels' construction and the safety of staff and equipment. In the paper, the characters of rockburst patterns are analyzed for the transportation and drainage tunnels. The results are illustrated...  相似文献   

6.
Roadways excavated in soft rocks at great depth are difficult to be maintained due to large deformation of surrounding rocks, which greatly influences the safety and efficiency of deep resources exploitation. During the excavation process of a deep soft rock tunnel, the rock wall may be compacted due to large deformation. In this paper, the technique to address this problem by a two-dimensional (2D) finite element software, large deformation engineering analyses software (LDEAS 1.0), is provided. By using the Lagrange multiplier method, the kinematic constraint of non-penetrating condition and static constraint of Coulomb friction are introduced to the governing equations in the form of incremental displacement. The numerical example demonstrates the efficiency of this technology. Deformations of a transportation tunnel in inclined soft rock strata at the depth of 1 000 m in Qishan coal mine and a tunnel excavated to three different depths are analyzed by two models, i.e. the additive decomposition model and polar decomposition model. It can be found that the deformation of the transportation tunnel is asymmetrical due to the inclination of rock strata. For extremely soft rock, large deformation can converge only for the additive decomposition model. The deformation of surrounding rocks increases with the increase in the tunnel depth for both models. At the same depth, the deformation calculated by the additive decomposition model is smaller than that by the polar decomposition model.  相似文献   

7.
The existence of squeezing ground conditions can lead to significant challenges in designing an adequate support system for tunnels.Numerous empirical,observational and analytical methods have been suggested over the years to design support systems in squeezing ground conditions,but all of them have some limitations.In this study,a novel experimental setup having physical model for simulating the tunnel boring machine(TBM)excavation and support installation process in squeezing clay-rich rocks is developed.The observations are made to understand better the interaction between the support and the squeezing ground.The physical model included a large true-triaxial cell,a miniature TBM,laboratoryprepared synthetic test specimen with properties similar to natural mudstone,and an instrumented cylindrical aluminum support system.Experiments were conducted at realistic in situ stress levels to study the time-dependent three-dimensional tunnel support convergence.The tunnel was excavated using the miniature TBM in the cubical rock specimen loaded in the true-triaxial cell,after which the support was installed.The confining stress was then increased in stages to values greater than the rock’s unconfined compressive strength.A model for the time-dependent longitudinal displacement profile(LDP)for the supported tunnel was proposed using the tunnel convergence measurements at different times and stress levels.The LDP formulation was then compared with the unsupported model to calculate the squeezing amount carried by the support.The increase in thrust in the support was backcalculated from an analytical solution with the assumption of linear elastic support.Based on the test results and case studies,a recommendation to optimize the support requirement for tunnels in squeezing ground is proposed.  相似文献   

8.
For the compressive stress-induced failure of tunnels at depth, rock fracturing process is often closely associated with the generation of surface parallel fractures in the initial stage, and shear failure is likely to occur in the final process during the formation of shear bands, breakouts or V-shaped notches close to the excavation boundaries. However, the perfectly elastoplastic, strain-softening and elasto-brittle-plastic models cannot reasonably describe the brittle failure of hard rock tunnels under high in-situ stress conditions. These approaches often underestimate the depth of failure and overestimate the lateral extent of failure near the excavation. Based on a practical case of the mine-by test tunnel at an underground research laboratory (URL) in Canada, the influence of rock mass dilation on the depth and extent of failure and deformation is investigated using a calibrated cohesion weakening and frictional strengthening (CWFS) model. It can be found that, when modeling brittle failure of rock masses, the calibrated CWFS model with a constant dilation angle can capture the depth and extent of stress-induced brittle failure in hard rocks at a low confinement if the stress path is correctly represented, as demonstrated by the failure shape observed in the tunnel. However, using a constant dilation angle cannot simulate the nonlinear deformation behavior near the excavation boundary accurately because the dependence of rock mass dilation on confinement and plastic shear strain is not considered. It is illustrated from the numerical simulations that the proposed plastic shear strain and confinement-dependent dilation angle model in combination with the calibrated CWFS model implemented in FLAC can reasonably reveal both rock mass failure and displacement distribution in vicinity of the excavation simultaneously. The simulation results are in good agreement with the field observations and displacement measurement data.  相似文献   

9.
Recently based in the performance of tunnels under seismic movements a good progress is made in the seismic design of tunnels. The majority of problems in the tunnel structures take place in near fault conditions and in the case of great variation of rock properties. Not having a previous experience in the seismic design of the tunnels that pass through tectonic zones with very large heterogeneity (strong rock-soil or very poor rock that behaves like soil) this article presents the general aspects of seismic calculation of tunnels and application in a specific example. The article presents the methods of seismic input modeling, design and particularities of numerical calculations. The geological conditions in which the case study tunnel will be constructed are very common in Albanian territory and represent one of the most difficult cases for the construction of road tunnels. The applied approach for using the longitudinal models for generating time histories of acceleration that can be used as input for transversal models is very simple and will help the designers for the seismic analysis of other tunnels that will be constructed in Albania.  相似文献   

10.
中国金矿深部开挖中的岩爆预报与控制   总被引:1,自引:0,他引:1  
The studies of prediction and control ofrockburst are presented during deep excavation in a gold mine in China Firstly, the stress-relief method is used to obtain a vast amount of data about initial geostress. Secondly, 3D FEM analyses of large scale are performed to find out the law of geostress distribution at various excavation levels of the mining area. At the same time, as an equally important measure, six typical kinds of rock blocks are sampled for the experimental study of rockburst tendency. According to th esynthesized results of the theoretical and testing results, the methods of brittleness coefficient, brittle index and stress, and so on, are adopted. Finally, the evaluation on the possibility of rockbursts is given that may take place at the deep mining area and some effective measures are put forward to prevent and control the rockburst.  相似文献   

11.
The four diversion tunnels at Jinping Ⅱ hydropower station represent the deepest underground project yet conducted in China, with an overburden depth of 1500-2000 m and a maximum depth of 2525 m.The tunnel structure was subjected to a maximum external water pressure of 10.22 MPa and the maximum single-point groundwater inflow of 7.3 m~3/s. The success of the project construction was related to numerous challenging issues such as the stability of the rock mass surrounding the deep tunnels, strong rockburst prevention and control, and the treatment of high-pressure, large-volume groundwater infiltration. During the construction period, a series of new technologies was developed for the purpose of risk control in the deep tunnel project. Nondestructive sampling and in-situ measurement technologies were employed to fully characterize the formation and development of excavation damaged zones(EDZs), and to evaluate the mechanical behaviors of deep rocks. The time effect of marble fracture propagation, the brittleeductileeplastic transition of marble, and the temporal development of rock mass fracture and damage induced by high geostress were characterized. The safe construction of deep tunnels was achieved under a high risk of strong rockburst using active measures, a support system comprised of lining, grouting, and external water pressure reduction techniques that addressed the coupled effect of high geostress, high external water pressure, and a comprehensive early-warning system. A complete set of technologies for the treatment of high-pressure and large-volume groundwater infiltration was developed. Monitoring results indicated that the Jinping II hydropower station has been generally stable since it was put into operation in 2014.  相似文献   

12.
Control of rock joint parameters on deformation of tunnel opening   总被引:1,自引:0,他引:1  
Tunneling in complex rock mass conditions is a challenging task, especially in the Himalayan terrain, where a number of unpredicted conditions are reported. Rock joint parameters such as persistence, spacing and shear strength are the factors which significantly modify the working environments in the vicinity of the openings. Therefore, a detailed tunnel stability assessment is critically important based on the field data collection on the excavated tunnel’s face. In this context, intact as well as rock mass strength and deformation modulus is obtained from laboratory tests for each rock type encountered in the study area. Finite element method(FEM) is used for stability analysis purpose by parametrically varying rock joint persistence, spacing and shear strength parameters, until the condition of overbreak is reached. Another case of marginally stable condition is also obtained based on the same parameters. The results show that stability of tunnels is highly influenced by these parameters and the size of overbreak is controlled by joint persistence and spacing. Garnetiferous schist and slate characterized using high persistence show the development of large plastic zones but small block size, depending upon joint spacing; whereas low persistence, low spacing and low shear strength in marble and quartzite create rock block fall condition.  相似文献   

13.
Rockburst is a typical rock failure which frequently threatens both human life and construction equipment during highly stressed underground excavation.Rock lithology is a control factor of rockburst.In this paper,rockburst tests were conducted on rectangular prismatic specimens of six types of intact hard brittle rocks,i.e.granodiorite,granite,marble,basalt,sandstone and limestone,under one-free-face true triaxial loading conditions.With the use of high-speed cameras,an acoustic emission(AE)system and a scanning electron microscope(SEM),rockburst of different rocks was investigated.The results show that the strainbursts of granodiorite,granite and marble were accompanied by tensile splitting near the free face,and consequently were relatively strong with a large amount of fragment ejection and kinetic energy release.For basalt,sandstone and limestone,failure was primarily dominated by shear rupture.The strainbursts of basalt and sandstone were relatively small with minor fragment ejection and kinetic energy release;while no burst failure occurred on limestone due to its relatively low peak strength.Rock strength,fracturing and fragmentation characteristics,and failure modes of different rocks can significantly affect rockburst proneness and magnitude.The AE evolution coupled with SEM analysis reveals that the differences in the inhe rent microstructures and fracture evolution under loading are the primary factors accounting for different rockbursts in various rock types.  相似文献   

14.
Impact rockburst test on sandstone samples with a central hole is carried out under true triaxial static loads and vertical dynamic load conditions, and rock fragments after the test are collected. The fragments of sandstone generated from strain rockburst test and uniaxial compression test are also collected. The fragments are weighed and the length, width and thickness of each piece of fragments are measured respectively. The fragment quantities with coarse, medium, fine and micro grains in different size ranges, mass and particles distributions are also analyzed. Then, the fractal dimension of fragments is calculated by the methods of size-frequency, mass-frequency and length-to-thickness ratio-frequency. It is found that the crushing degree of impact rockburst fragments is higher, accompanied with blocky character- istics observably. The mass percentage of small grains, including fine and micro grains, in impact rock- burst test is higher than those in strain rockburst test and uniaxial compression test. Energy dissipation from rockburst tests is more than that from uniaxial compression test, as the quantity of micro grains generated does.  相似文献   

15.
This paper presents the principles of rock support for rockburst control and three rockburst support systems used in deep metal mines.Before the principles of rock support are presented,rock fracture related to strain burst is first discussed with the help of photos taken on site,and the energy sources and transformations during bursting are illustrated through conceptual models.Surface parallel extension fracture usually occurs in the ejected and surrounding rocks in a strain burst event,while the ejected rock in a fault-slip rockburst is often already pre-fractured before the event.There must be excessive release energy available for rock ejection.The excessive release energy comes from both the ejected rock itself and the surrounding rock.To prevent rock ejection in a rockburst,the support system must be able to dissipate the excessive release energy.All support devices in a support system for rockburst control must be able to dissipate energy,be firmly linked,and be compatible in deformability.A support system for rockburst control comprises surface-retaining devices and yield rockbolts as well as yield cablebolts when needed.Laying mesh on the top of shotcrete liner is a good practice to enhance the surfaceretaining capacity of the support system.Energy-absorbing yield rockbolts dissipate energy either by stretching of the bolt shank or by sliding of the inner anchor in the borehole.Mesh,mesh strap and shotcrete are the surface-retaining devices widely used in the current rock support systems.The three types of rock support used for rockburst control at present are soft support system using Split Set bolts,hybrid support system using rebar and two-point anchored yield bolts,and entirely yieldable support system using strong yield bolts.  相似文献   

16.
A protective layer(PL) is commonly reserved above foundation surface to protect the underlying rock mass during dam foundation excavation. In China, the PL of dam foundation is conventionally subdivided into two or three thin layers and excavated with the shallow-hole blasting method, even by pneumatic pick method in case of soft rock mass. The aforementioned layered excavation of the PL delays the construction of the whole project. After nearly 30-year practices, several safe and effcient methods for the PL excavation of dam foundation are gradually developed. They include shallow-hole bench blasting with cushion material(SBC) at the bottom of the hole, and horizontal smooth blasting(HSB). The PL is even cancelled on the condition that horizontal pre-split technique is employed during dam foundation excavation. This paper introduces the aforementioned two PL excavation methods(shallow-hole blasting and bench blasting) and horizontal pre-split technique of dam foundation without protective layer(HPP). The basic principles of blasting method, blasting geometry, charge structure, drill-and-blast parameters of typical projects are examined. Meanwhile, the merits and limitations of each method are compared. Engineering practices in China show that HSB is basically the optimal method for dam foundation PL excavation in terms of foundation damage control and rapid construction. Some new problems for dam foundation PL excavation arising, such as strong unloading and relaxation phenomenon that encountered in the gorge region of southwest China, are needed to be addressed; and the corresponding countermeasures are discussed as well.  相似文献   

17.
Rockburst problems induced by high in-situ stresses were prominent during construction of the headrace tunnels of Jinping II hydropower station. The rockbursts occurred in various forms, and it is necessary to take pertinent measures for integrated prevention and control of rockbursts. In view of the rockburst characteristics during tunnel construction of Jinping II hydropower station, the engineering geological conditions were presented, and the features, mechanisms and forms of rockbursts observed during construction were analyzed in detail. A large number of scientific researches, experiments and applications were conducted. Multiple measures were adopted to prevent and control rockbursts, including the prediction and early warning measures, stress relief by blasting in advance, optimized blasting design and optimized tunnel support in the tunnel sections prone to strong rockbursts. The effectiveness of these prevention and control measures was evaluated. Experiences have been accumulated through a great number of helpful explorations and practices for rockburst prevention and control. A comprehensive rockburst prevention and control system has been gradually established.  相似文献   

18.
Due to the weakness in mechanical properties of chlorite schist and the high in situ stress in Jinping II hydropower station, the rock mass surrounding the diversion tunnels located in chlorite schist was observed with extremely large deformations. This may significantly increase the risk of tunnel instability during excavation. In order to assess the stability of the diversion tunnels laboratory tests were carried out in association with the petrophysical properties, mechanical behaviors and waterlweakening properties of chlorite schist. The continuous deformation of surrounding rock mass, the destruction of the support structure and a large-scale collapse induced by the weak chlorite schist and high in situ stress were analyzed. The distributions of compressive deformation in the excavation zone with large deformations were also studied. In this regard, two reinforcement schemes for the excavation of diversion tunnel bottom section were proposed accordingly. This study could offer theoretical basis for deed tunnel construction in similar geological condition~  相似文献   

19.
Numerous deep underground projects have been designed and constructed in China, which are beyond the current specifications in terms of scale and construction difficulty. The severe failure problems induced by high in situ stress, such as rockburst, spalling, damage of deep surrounding rocks, and timedependent damage, were observed during construction of these projects. To address these problems, the dynamic design method for deep hard rock tunnels is proposed based on the disintegration process of surrounding rocks using associated dynamic control theories and technologies. Seven steps are basically employed:(i) determination of design objective,(ii) characteristics of site, rock mass and project, and identification of constraint conditions,(iii) selection or development of global design strategy,(iv)determination of modeling method and software,(v) preliminary design,(vi) comprehensive integrated method and dynamic feedback analysis, and(vii) final design. This dynamic method was applied to the construction of the headrace tunnels at Jinping II hydropower station. The key technical issues encountered during the construction of deep hard rock tunnels, such as in situ stress distribution along the tunnels, mechanical properties and constitutive model of deep hard rocks, determination of mechanical parameters of surrounding rocks, stability evaluation of surrounding rocks, and optimization design of rock support and lining, have been adequately addressed. The proposed method and its application can provide guidance for deep underground projects characterized with similar geological conditions.  相似文献   

20.
This paper presents the application of a hybrid finite-discrete element method to study blast-induceddamage in circular tunnels. An extensive database of field tests of underground explosions above tunnelsis used for calibrating and validating the proposed numerical method; the numerical results areshown to be in good agreement with published data for large-scale physical experiments. The method isthen used to investigate the influence of rock strength properties on tunnel durability to withstand blastloads. The presented analysis considers blast damage in tunnels excavated through relatively weak(sandstone) and strong (granite) rock materials. It was found that higher rock strength will increase thetunnel resistance to the load on one hand, but decrease attenuation on the other hand. Thus, undercertain conditions, results for weak and strong rock masses are similar. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号