首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To determine whether genetic polymorphism of cytochrome P450 (CYP) 2C9 affects the in vivo metabolism of warfarin enantiomers. METHODS: Eighty-six Japanese patients heart disease who were given warfarin participated in the study. Plasma unbound concentrations of warfarin enantiomers and urinary (S)-7-hydroxywarfarin concentrations were measured by means of a chiral HPLC and ultrafiltration technique to calculate the unbound oral clearance (CLpo,u) for the enantiomers and the formation clearance (CLm) for (S)-warfarin 7-hydroxylation. Genotyping for CYP2C9 (the wild type [wt], Arg144/Cys, and I1e359/Leu) and for CYP2C19 (wt, ml, and m2) was performed with a polymerase chain reaction method. RESULTS: Three patients were heterozygous for the CYP2C9 Leu359 mutation but none were homozygous for the mutation (the allele frequency of 0.017). None had a CYP2C9 Cys144 allele. The medians for (S)-warfarin CLpo,u and its 7-hydroxylation CLm obtained from heterozygotes of CYP2C9 Leu359 were significantly less than those obtained from homozygotes of the wt allele, as follows: 234 ml/min (range, 156 to 269 ml/min) versus 632 ml/min (range, 180 to 2070 ml/min) (p < 0.001) and 0.20 ml/min (range, 0.05 to 0.77 ml/min) versus 0.80 ml/min (range, 0.05 to 14.9 ml/min) (p < 0.05), respectively. In contrast, no difference was observed in (R)-warfarin CLpo,u between the groups. The allele frequencies for CYP2C19 m1 and CYP2C19 m2 were 0.26 and 0.14, respectively, indicating 15% of patients were genotypically poor metabolizers of CYP2C19. No difference in CLpo,u for warfarin enantiomers was observed between the assumed CYP2C19 phenotypes. CONCLUSION: Heterozygotes for CYP2C9 I1e359/Leu allele have reduced in vivo metabolism of (S)-warfarin but not (R)-warfarin. Because (S)-warfarin has a greater anticoagulant potency than its (R)-congener, the genetic polymorphism of CYP2C9 may partly account for the large interpatient variability in therapeutic dosages of warfarin.  相似文献   

2.
PURPOSE: The aim of this study was to clarify the effects of genetic polymorphisms of cytochrome P450 (CYP) 2C9 and 2C19 on the metabolism of phenytoin (PHT). In addition, a population pharmacokinetic analysis was performed. METHODS: The genotype of CYP2C9 (Arg144/Cys, Ile359/Leu) and CYP2C19(*1, *2 or *3) in 134 Japanese adult patients with epilepsy treated with PHT were determined, and their serum concentrations of 5-(4-hydroxyphenyl)-5-phenylhydantoin (p-HPPH) enantiomers, being major metabolites of PHT, were measured. A population pharmacokinetic analysis (NONMEM analysis) was performed to evaluate whether genetic polymorphism of CYP2C9/19 affects the clinical use of PHT by using the 336 dose-serum concentration data. RESULTS: The mean maximal elimination rate (Vmax) was 42% lower in the heterozygote for Leu359 allele in CYP2C9, and the mean Michaelis-Menten constants (Km) in the heterozygous extensive metabolizers and the poor metabolizers of CYP2C19 were 22 and 54%, respectively, higher than those without the mutations in CYP2C9/19 genes. (R)- and (S)-p-HPPH/PHT ratios were lower in patients with mutations in CYP2C9 or CYP2C19 gene than those in patients without mutations. CONCLUSIONS: Although the hydroxylation capacity of PHT was impaired with mutations of CYP2C9/19, the impairment was greater for CYP2C9. In view of the clinical use of PHT, two important conclusions were derived from this population study. First, the serum PHT concentration in patients with the Leu359 allele in CYP2C9 would increase dramatically even at lower daily doses. Second, the patients with CYP2C19 mutations should be treated carefully at higher daily doses of PHT.  相似文献   

3.
Cytochrome P450 2C9 (CYP2C9) catalysis the metabolism of important drugs such as phenytoin, S-warfarin, tolbutamide, losartan, torasemide, and nonsteroidal anti-inflammatory drugs. A functional polymorphism of the CYP2C9 gene has been described. The variant alleles include CYP2C9*2 having a point mutation in exon 3 causing an Arg144Cys exchange, and CYP2C9*3 with a point mutation in exon 7 resulting in an Ile359Leu exchange. Genotyping of these variant forms was carried out in 430 Swedish healthy volunteers and three different methods were compared. Sequence analysis of the different PCR products revealed that other genes in the CYP2C locus were co-amplified in one of the methods applied, whereas the other two methods were specific for CYP2C9. The frequencies of the CYP2C9*1, CYP2C9*2 and CYP2C9*3 alleles in the population examined were found to be 0.819, 0.107, and 0.074, respectively. The need for careful evaluation of the genotyping procedure by sequence analysis of PCR products is emphasised.  相似文献   

4.
Accumulating evidence indicates that CYP2C9 ranks amongst the most important drug metabolizing enzymes in humans. Substrates for CYP2C9 include fluoxetine, losartan, phenytoin, tolbutamide, torsemide, S-warfarin, and numerous NSAIDs. CYP2C9 activity in vivo is inducible by rifampicin. Evidence suggests that CYP2C9 substrates may also be induced variably by carbamazepine, ethanol and phenobarbitone. Apart from the mutual competitive inhibition which may occur between alternate substrates, numerous other drugs have been shown to inhibit CYP2C9 activity in vivo and/or in vitro. Clinically significant inhibition may occur with coadministration of amiodarone, fluconazole, phenylbutazone, sulphinpyrazone, sulphaphenazole and certain other sulphonamides. Polymorphisms in the coding region of the CYP2C9 gene produce variants at amino acid residues 144 (Arg144Cys) and 359 (Ile359Leu) of the CYP2C9 protein. Individuals homozygous for Leu359 have markedly diminished metabolic capacities for most CYP2C9 substrates, although the frequency of this allele is relatively low. Consistent with the modulation of enzyme activity by genetic and other factors, wide interindividual variability occurs in the elimination and/or dosage requirements of prototypic CYP2C9 substrates. Individualisation of dose is essential for those CYP2C9 substrates with a narrow therapeutic index.  相似文献   

5.
Roxithromycin has been shown to be a relatively weak inhibitor of cytochrome P450 (P450 or CYP)-dependent drug oxidations, compared with troleandomycin. The potential for roxithromycin and its major metabolites found in human urine [namely the decladinosyl derivative (M1), O-dealkyl derivative (M2), and N-demethyl derivative (M3)] to inhibit testosterone 6beta-hydroxylation after metabolic activation by CYP3A4 was examined and compared with inhibition by troleandomycin and erythromycin in vitro. Of roxithromycin and its studied metabolites, M3 was the most potent in inhibiting CYP3A4-dependent testosterone 6beta-hydroxylation by human liver microsomes and was activated to the inhibitory P450.Fe2+-metabolite complex to the greatest extent. Roxithromycin and its metabolites were N-demethylated by human liver microsomes, although the rates were slower than those measured with troleandomycin and erythromycin as substrates. Recombinant human CYP3A4 in a baculovirus system coexpressing NADPH-P450 reductase was very active in catalyzing the N-demethylation of roxithromycin, M1, and M2, as well as troleandomycin, erythromycin, and M3. The order for inhibition of CYP3A4-dependent testosterone 6beta-hydroxylation activities by these macrolide antibiotics in the recombinant CYP3A4 system was estimated to be troleandomycin > erythromycin >/= M3 >/= M2 > M1 >/= roxithromycin. Erythromycin, roxithromycin, and its metabolites all failed to inhibit CYP1A2-dependent (R)-warfarin 7-hydroxylation and CYP2C9-dependent (S)-warfarin 7-hydroxylation but did inhibit CYP3A4-dependent (R)-warfarin 7-hydroxylation. These results suggest that roxithromycin itself is not as potent an inhibitor of CYP3A4 activities as are troleandomycin and erythromycin, probably because of the slower metabolism of this compound to metabolites M1, M2, and M3 in humans.  相似文献   

6.
A genetic polymorphism in the metabolism of the anticonvulsant drug S-mephenytoin has been attributed to defective CYP2C19 alleles. This genetic polymorphism displays large interracial differences with the poor metabolizer (PM) phenotype representing 2-5% of Caucasian and 13-23% of Oriental populations. In the present study, we identified two new mutations in CYP2C19 in a single Swiss Caucasian PM outlier (JOB 1) whose apparent genotype (CYP2C19*1/CYP2C19*2) did not agree with his PM phenotype. These mutations consisted of a single base pair mutation (G395A) in exon 3 resulting in an Arg132-->Gln coding change and a (G276C) mutation in exon 2 resulting in a coding change Glu92-->Asp. However, the G276C mutation and the G395A mutation resided on separate alleles. Genotyping tests of a family study of JOB1 showed that the exon 2 change occurred on the CYP2C19*2 allele, which also contained the known splice mutation in exon 5 (this variant is termed CYP2C19*2B to distinguish it from the original splice variant now termed CYP2C19*2A). The exon 3 mutation resided on a separate allele (termed CYP2C19*6). In all other respects this allele was identical to one of two wild-type alleles, CYP2C19*1B. The incidence of CYP2C19*6 in a European Caucasian population phenotyped for mephenytoin metabolism was 0/344 (99% confidence limits of 0 to 0.9%). Seven of 46 Caucasian CYP2C19*2 alleles were CYP2C19*2B(15%) and 85% were CYP2C19*2A. The Arg132Gln mutation was produced by site-directed mutatgenesis and the recombinant protein expressed in a bacterial cDNA expression system. Recombinant CYP2C19 6 had negligible catalytic activity toward S-mephenytoin compared with CYP2C19 1B, which is consistent with the conclusion that CYP2C19*6 represents a PM allele. Thus, the new CYP2C19*6 allele contributes to the PM phenotype in Caucasians.  相似文献   

7.
CYP2D6 genotyping (CYP2D6*3, CYP2D6*4, CYP2D6*5, CYP2D6*13, CYP2D6*16 alleles and gene duplications) was previously performed on 1053 Caucasian and African-American lung cancer cases and control individuals and no significant difference in allele frequencies between cases and control individuals detected. We have carried out additional genotyping (CYP2D6*6, CYP2D6*7, CYP2D6*8, CYP2D6*9, CYP2D6*10, CYP2D6*17 alleles) and debrisoquine phenotyping on subgroups from this study to assess phenotype-genotype relationships. African-Americans showed significant differences from Caucasians with respect to frequency of defective CYP2D6 alleles, particularly CYP2D6*4 and CYP2D6*5. The CYP2D6*17 allele occurred at a frequency of 0.26 among 87 African-Americans and appeared to explain higher average metabolic ratios among African-Americans compared with Caucasians. CYP2D6*6, CYP2D6*8, CYP2D6*9 and CYP2D6*10 were rare in both ethnic groups but explained approximately 40% of higher than expected metabolic ratios among extensive metabolizers. Among individuals phenotyped with debrisoquine, 32 out of 359 were in the poor metabolizer range with 24 of these (75%) also showing two defective CYP2D6 alleles. Additional single strand conformational polymorphism analysis screening of samples showing large phenotype-genotype discrepancies resulted in the detection of three novel polymorphisms. If subjects taking potentially interfering drugs were excluded, this additional screening enabled the positive identification of 88% of phenotypic poor metabolizers by genotyping. This sensitivity was comparable with that of phenotyping, which identified 90% of those with two defective alleles as poor metabolizers.  相似文献   

8.
Cytochromes mediating the biotransformation of dextromethorphan to dextrorphan and 3-methoxymorphinan, its principal metabolites in man, have been studied by use of liver microsomes and microsomes containing individual cytochromes expressed by cDNA-transfected human lymphoblastoid cells. In-vitro formation of dextrorphan from dextromethorphan by liver microsomes was mediated principally by a high-affinity enzyme (Km (substrate concentration producing maximum reaction velocity) 3-13 microM). Formation of dextrorphan from 25 microM dextromethorphan was strongly inhibited by quinidine (IC50 (concentration resulting in 50% inhibition) = 0.37 microM); inhibition by sulphaphenazole was approximately 18% and omeprazole and ketoconazole had minimal effect. Dextrorphan was formed from dextromethorphan by microsomes from cDNA-transfected lymphoblastoid cells expressing CYP2C9, -2C19, and -2D6 but not by those expressing CYP1A2, -2E1 or -3A4. Despite the low in-vivo abundance of CYP2D6, this cytochrome was identified as the dominant enzyme mediating dextrorphan formation at substrate concentrations below 10 microM. Formation of 3-methoxy-morphinan from dextromethorphan in liver microsomes proceeded with a mean Km of 259 microM. For formation of 3-methoxymorphinan from 25 microM dextromethorphan the IC50 for ketoconazole was 1.15 microM; sulphaphenazole, omeprazole and quinidine had little effect. 3-Methoxymorphinan was formed by microsomes from cDNA-transfected lymphoblastoid cells expressing CYP2C9, -2C19, -2D6, and -3A4, but not by those expressing CYP1A2 or -2E1. CYP2C19 had the highest affinity (Km = 49 microM) whereas CYP3A4 had the lowest (Km = 1155 microM). Relative abundances of the four cytochromes were determined in liver microsomes by use of the relative activity factor approach. After adjustment for relative abundance, CYP3A4 was identified as the dominant enzyme mediating 3-methoxymorphinan formation from dextromethorphan, although CYP2C9 and -2C19 were estimated to contribute to 3-methoxymorphinan formation, particularly at low substrate concentrations. Although formation of dextrorphan from dextromethorphan appears to be sufficiently specific to be used as an in-vitro or in-vivo index reaction for profiling of CYP2D6 activity, the findings raise questions about the specificity of 3-methoxymorphinan formation as an index of CYP3A activity.  相似文献   

9.
We tested the ability of human liver microsomes (HLMs) and recombinant human cytochrome P450 (CYP or P450) isoforms to catalyze the N-demethylation of nirvanol-free (S)-mephenytoin [(S)-MP] in vitro. In mixed HLMs, the kinetics of (S)-MP N-demethylation suggested two contributing activities. A high-affinity/low-capacity component exhibited a KM of 174.1 microM and a Vmax of 170.5 pmol/mg protein/min, whereas a low-affinity/high-capacity component exhibited a KM of 1911 microM and a Vmax of 3984 pmol/mg protein/min. The activity of the high-affinity component was completely abolished by sulfaphenazole, with little effect on the low-affinity component. Of the recombinant P450 isoforms tested, only CYP2B6 and CYP2C9 formed nirvanol from (S)-MP. The KM value (150 +/- 42 microM) derived for recombinant CYP2C9 was close to that obtained for the high-affinity/low-capacity component in mixed HLMs (KM = 174.1 microM). The predicted contribution of this activity at concentrations (1-25 microM) achieved after a single 100-mg dose of racemic MP is approximately 30% of the rate of nirvanol formation. At concentrations of >1000 microM, we estimate that >90% of the rate can be explained by the low-affinity activity (CYP2B6). Therefore, the N-demethylation of (S)-MP to nirvanol may be a useful means of probing the activity of CYP2B6 in vitro when concentrations of >1000 microM are used, but it is unlikely to be a suitable phenotyping tool for this isoform in vivo, where concentrations of >1000 microM are rarely encountered.  相似文献   

10.
Human cytochrome P450s 2C9 and 2C19 metabolize many important drugs including tolbutamide, phenytoin, and (S)-warfarin. Although they differ at only 43 of 490 amino acids, sulfaphenazole (SFZ) is a potent and selective inhibitor of P450 2C9 with an IC50 and a spectrally determined binding constant, KS, of <1 microM. P450 2C19 is not affected by SFZ at concentrations up to 100 microM. A panel of CYP2C9/2C19 chimeric proteins was constructed in order to identify the sequence differences that underlie this difference in SFZ binding. Replacement of amino acids 227-338 in 2C19 with the corresponding region of 2C9 resulted in high-affinity SFZ binding (KS approximately 4 microM) that was not seen when a shorter fragment of 2C9 was substituted (227-282). However, replacement of amino acids 283-338 resulted in extremely low holoenzyme expression levels in Escherichia coli, indicating protein instability. A single mutation, E241K, which homology modeling indicated would restore a favorable charge pair interaction between K241 in helix G and E288 in helix I, led to successful expression of this chimera that exhibited a KS < 10 microM for SFZ. Systematic replacement of the remaining differing amino acids revealed that two amino acid substitutions in 2C19 (N286S, I289N) confer high-affinity SFZ binding (KS < 5 microM). When combined with a third substitution, E241K, the resulting 2C19 triple mutant exhibited a high cataltyic efficiency for warfarin metabolism with the relaxed stereo- and regiospecificity of 2C19 and a lower KM for (S)-warfarin metabolism (<10 microM) typical of 2C9.  相似文献   

11.
Studies using human liver microsomes and nine recombinant human cytochrome P450 (CYP) isoforms (CYP1A1, 1A2, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1 and 3A4) were performed to identify the CYP isoform(s) involved in the major metabolic pathway (3-hydroxylation) of quinine in humans. Eadie-Hofstee plots for the formation of 3-hydroxyquinine exhibited apparently monophasic behavior for all of the 10 different microsomal samples studies. There was interindividual variability in the kinetic parameters, as follows: 1.8-, 3.2- and 3.5-fold for K(m) Vmax and Vmax/K(m), respectively. The mean +/- S.D. values for K(m), Vmax and Vmax/K(m) were 106.1 +/- 19.3 microM, 1.33 +/- 0.48 nmol/mg protein/min and 12.8 +/- 5.1 microliters/mg protein/min, respectively. With 10 different human liver microsomes, the relationships between the 3-hydroxylation of quinine and the metabolic activities for substrates of the respective CYP isoforms were evaluated. The 3-hydroxylation of quinine showed an excellent correlation (r = 0.986, P < .001) with 6 beta-hydroxylation of testosterone, a marker substrate for CYP3A4. A significant correlation (r = 0.768, P < .01) between the quinine 3-hydroxylase and S-mephenytoin 4'-hydroxylase activities was also observed. However, no significant correlation existed between the 3-hydroxylation of quinine and the oxidative activities for substrates for CYP1A2 (phenacetin), 2C9 (diclofenac), 2D6 (desipramine) and 2E1 (chlorzoxazone). Ketoconazole and troleandomycin (inhibitors of CYP3A4) inhibited the 3-hydroxylation of quinine by human liver microsomes with respective mean IC50 values of 0.026 microM and 28.9 microM. Anti-CYP3A antibodies strongly inhibited quinine 3-hydroxylation, whereas weak inhibition was observed in the presence of S-mephenytoin or anti-CYP2C antibodies. Among the nine recombinant human CYP isoforms, CYP3A4 exhibited the highest catalytic activity with respect to the 3-hydroxylation of quinine, compared with the minor activity of CYP2C19 and little discernible or no effect of other CYP isoforms. Collectively, these data suggest that the 3-hydroxylation of quinine is mediated mainly by CYP3A4 and to a minor extent by CYP2C19. Other CYP isoforms used herein appear to be of negligible importance in this major pathway of quinine in humans.  相似文献   

12.
The polymorphic cytochrome P450 CYP2D6 is involved in the metabolism of various drugs of wide therapeutic use and is a presumed susceptibility factor for certain environmentally-induced diseases. Our aim was to define the mutations and alleles of the CYP2D6 gene and to evaluate their frequencies in the European population. Using polymerase chain reaction-single strand conformation polymorphism analysis, 672 unrelated subjects were screened for mutations in the 9 exons of the gene and their exon-intron boundaries. A total of 48 point mutations were identified, of which 29 were novel. Mutations 1749 G-->C, 2938 C-->T and 4268 G-->C represented 52.6%, 34.3% and 52.9% of the mutations in the total population, respectively. Of the eight detrimental mutations detected, the 1934 G-->A, the 1795 Tdel and the 2637 Adel accounted for 65.8%, 6.2% and 4.8% respectively, within the poor metabolizer subgroup. Fifty-three different alleles were characterized from the mutation pattern and by allele-specific sequencing. They are derived from three major alleles, namely the wild-type CYP2D6*1A, the functional CYP2D6*2 and the null CYP2D6*4A. Five allelic variants (CYP2D6*1A, *2, *2B, *4A and *5) account for about 87% of all alleles, while the remaining alleles occur with a frequency of 0.1%-2.7%. These data provide a solid basis for future epidemiological, clinical as well as interethnic studies of the CYP2D6 polymorphism and highlight that the described single strand conformation polymorphism method can be successfully used in designing such studies.  相似文献   

13.
The objective of the present study was to investigate whether the frequent amino acid polymorphisms, Ile/Leu27 and Ser/Asn487, of the hepatocyte nuclear factor-1alpha gene were associated with alterations in glucose-induced serum C-peptide and serum insulin responses among glucose-tolerant first-degree relatives of type 2 diabetic patients. The study comprised 2 independent Danish cohorts. Among 74 unrelated type 2 diabetic relatives, 12 homozygous carriers of the Ile/Leu27 polymorphism had a 32% decrease in the 30-min serum C-peptide level (P = 0.01), as well as a 39% decrease in the 30-min serum insulin level (P = 0.02) during an oral glucose tolerance test. Ten homozygous carriers of the Ile/Leu27 variant did, however, not differ from wild-type carriers, with respect to the acute circulating insulin and serum C-peptide responses during an i.v. glucose tolerance test in the same study cohort. In a larger (more than 3-fold) study group of 230 glucose tolerant offspring of 62 type 2 diabetic probands, 33 homozygous carriers of the Ile/Leu27 variant did not differ, with respect to either serum insulin and serum C-peptide levels during an oral glucose tolerance test or acute serum insulin and serum C-peptide responses during an i.v. glucose tolerance test. We therefore consider the former positive finding as a statistical type I error. There were no differences in the above mentioned variables between carriers of the Ser/Asn487 polymorphism and wild-type carriers within any of the 2 study populations. Nor did carriers of combined genotypes, i.e. carriers of both the Ile/Leu27 and the Ser/Asn487 variants, show any associations with the examined variables. In conclusion, the Ile/Leu27 and Ser/ Asn487 polymorphisms of the hepatocyte nuclear factor-1alpha gene have apparently no major impact on the pancreatic beta-cell function, after an oral and i.v. glucose challenge, in Caucasian first-degree relatives of type 2 diabetic patients.  相似文献   

14.
Despite a wide interindividual variation of cytochrome P-450 1A2 (CYP1A2) activity, genetic polymorphism of CYP1A2 has not been reported. By amplification of exons of CYP1A2 by polymerase chain reaction in eight Chinese subjects, the polymerase chain reaction products were directly sequenced. One subject showed heterozygous C2866-->G (Phe21-->Leu) polymorphism. DNA from 157 Chinese subjects (104 polychlorinated biphenyl-exposed subjects and 53 control subjects) was screened for polymorphism by single-strand conformation polymorphism method and MboII endonuclease digestion. Only 1 of 157 samples showed another heterozygous C2866-->G mutation. The subject was previously exposed to polychlorinated biphenyl and showed a value of 3.5% in the caffeine breath test. The value is not significantly higher than the mean value of polychlorinated biphenyl-exposed subjects (3.12 +/- 0.29%, mean +/- S.E.M.). The incidence of the point mutation in these Chinese subjects is less than 1%. The prevalence of the F21L mutation in other ethnic groups and its effect on the metabolic activity of CYP1A2 remain to be further evaluated.  相似文献   

15.
A genetic polymorphism (A4889-->G) in the human CYP1A1 gene which creates an Ile462-->Val amino acid substitution has been suggested to cause altered enzymatic properties of CYP1A1. Since several epidemiological studies have shown an association between the CYP1A1-Val allele and lung cancer, we considered it of importance to evaluate the in vitro kinetic properties of the two CYP1A1 variants after expression of each cDNA in yeast. No differences were found in K(m) or Vmax for CYP1A1 dependent O-dealkylation of ethoxyresorufin and 3-hydroxylation of benzo(a)pyrene between the two variants. The data indicate that the Ile/Val polymorphism in human CYP1A1 is not functionally important.  相似文献   

16.
CYP2C19 (S-mephenytoin hydroxylase) is a polymorphically expressed enzyme. Currently, two defective alleles are known--CYP2C19*2 and CYP2C19*3. The authors have developed an oligonucleotide ligation assay to detect these two alleles. This assay combines the hybridization of one common, biotinylated capture probe and two allele-specific probes to the target DNA, with the ability of a DNA ligase to distinguish mismatched nucleotides. The probes are only ligated if they are base paired correctly to the target strand. The biotin is bound to streptavidin, and all DNA not covalently bound to the biotin-labeled capture probe, is removed in a washing procedure. The allele-specific probes are labeled with either europium or samarium, and their emission can be measured simultaneously. The ratio between the emission separates the genotypes. This method was applied on DNA from 19 whites and 21 Vietnamese living in Denmark. All genotypes determined by the assay were consistent with the results from restriction enzyme cleavage. There were 12 poor metabolizers; 10 homozygous CYP2C19*2/CYP2C19*2, one heterozygous CYP2C19*2/CYP2C19*3, and one heterozygous CYP2C19*1/CYP2C19*2. The authors conclude that this assay is well-suited for a high throughput of samples in a routine laboratory. The finding of an apparently heterozygous CYP2C19*1/CYP2C19*2 poor metabolizer, confirms that there are still unknown mutations in CYP2C19.  相似文献   

17.
Purified recombinant human liver cytochrome P450 2C9 was produced, from expression of the corresponding cDNA in yeast, in quantities large enough for UV-visible and 1H NMR experiments. Its interaction with several substrates (tienilic acid and two derivatives, lauric acid and diclofenac) and with a specific inhibitor, sulfaphenazole, was studied by UV-visible and 1H NMR spectroscopy. At 27 degrees C, all those substrates led to an almost complete conversion of CYP 2C9 to high-spin (S = 5/2) CYP 2C9-substrate complexes characterized by a Soret peak at 390 nm; their KD values varied between 1 and 42 microM. On the contrary, sulfaphenazole led to a low-spin (S = 1/2) CYP 2C9 complex upon binding of its NH2 group to CYP 2C9 iron. Interactions of the five substrates with the enzyme were studied by paramagnetic relaxation effects of CYP 2C9-iron(III) on the 1H NMR spectrum of each substrate. Distances between the heme iron atom and substrate protons were calculated from the NMR data, and the orientation of the substrate relative to iron was determined from those distances. Finally, a model for substrate positioning in the CYP 2C9 active site was constructed by molecular modeling studies under the constraint of the iron-proton distances. It points out two structural characteristics for a compound to be selectively recognized by CYP 2C9: (i) the presence of an anionic site able to establish an ionic bond with a putative cationic residue of the protein and (ii) the presence of an hydrophobic zone between the substrate hydroxylation site and the anionic site. Sulfaphenazole was easily included in that model; its very high affinity for CYP 2C9 is due to a third structural feature, the presence of its NH2 function which binds to CYP 2C9 iron.  相似文献   

18.
Cytochrome P450 2D6 (CYP2D6) metabolizes many important drugs. CYP2D6 activity ranges from complete deficiency to ultrafast metabolism, depending on at least 16 different known alleles. Their frequencies were determined in 589 unrelated German volunteers and correlated with enzyme activity measured by phenotyping with dextromethorphan or debrisoquine. For genotyping, nested PCR-RFLP tests from a PCR amplificate of the entire CYP2D6 gene were developed. The frequency of the CYP2D6*1 allele coding for extensive metabolizer (EM) phenotype was .364. The alleles coding for slightly (CYP2D6*2) or moderately (*9 and *10) reduced activity (intermediate metabolizer phenotype [IM]) showed frequencies of .324, .018, and .015, respectively. By use of novel PCR tests for discrimination, CYP2D6 gene duplication alleles were found with frequencies of .005 (*1x2), .013 (*2x2), and .001 (*4x2). Frequencies of alleles with complete deficiency (poor metabolizer phenotype [PM]) were .207 (*4), .020 (*3 and *5), .009 (*6), and .001 (*7, *15, and *16). The defective CYP2D6 alleles *8, *11, *12, *13, and *14 were not found. All 41 PMs (7.0%) in this sample were explained by five mutations detected by four PCR-RFLP tests, which may suffice, together with the gene duplication test, for clinical prediction of CYP2D6 capacity. Three novel variants of known CYP2D6 alleles were discovered: *1C (T1957C), *2B (additional C2558T), and *4E (additional C2938T). Analysis of variance showed significant differences in enzymatic activity measured by the dextromethorphan metabolic ratio (MR) between carriers of EM/PM (mean MR = .006) and IM/PM (mean MR = .014) alleles and between carriers of one (mean MR = .009) and two (mean MR = .003) functional alleles. The results of this study provide a solid basis for prediction of CYP2D6 capacity, as required in drug research and routine drug treatment.  相似文献   

19.
Our laboratory has shown that human liver microsomes metabolize the anti-HIV drug 3'-azido-3'-deoxythymidine (AZT) via a P450-type reductive reaction to a toxic metabolite 3'-amino-3'-deoxythymidine (AMT). In the present study, we examined the role of specific human P450s and other microsomal enzymes in AZT reduction. Under anaerobic conditions in the presence of NADPH, human liver microsomes converted AZT to AMT with kinetics indicative of two enzymatic components, one with a low Km (58-74 microM) and Vmax (107-142 pmol AMT formed/min/mg protein) and the other with a high Km (4.33-5.88 mM) and Vmax (1804-2607 pmol AMT formed/min/mg). Involvement of a specific P450 enzyme in AZT reduction was not detected by using human P450 substrates and inhibitors. Antibodies to human CYP2E1, CYP3A4, CYP2C8, CYP2C9, CYP2C19, and CYP2A6 were also without effect on this reaction. NADH was as effective as NADPH in promoting microsomal AZT reduction, raising the possibility of cytochrome b5 (b5) involvement. Indeed, AZT reduction among six human liver samples correlated strongly with microsomal b5 content (r2 = 0.96) as well as with aggregate P450 content (r2 = 0.97). Upon reconstitution, human liver b5 plus NADH:b5 reductase and CYP2C9 plus NADPH:P450 reductase were both effective catalysts of AZT reduction, which was also supported when CYP2A6 or CYP2E1 was substituted for CYP2C9. Kinetic analysis revealed an AZT Km of 54 microM and Vmax of 301 pmol/min for b5 plus NADH:b5 reductase and an AZT Km of 103 microM and Vmax of 397 pmol/min for CYP2C9 plus NADPH:P450 reductase. Our results indicate that AZT reduction to AMT by human liver microsomes involves both b5 and P450 enzymes plus their corresponding reductases. The capacity of these proteins and b5 to reduce AZT may be a function of their heme prothestic groups.  相似文献   

20.
Buprenorphine (BN) is a thebaine derivative with analgesic properties. To identify and characterize the cytochrome P450 (CYP) enzyme(s) involved in BN N-dealkylation, in vitro studies using human liver microsomes and recombinant human CYP enzymes were performed. Norbuprenorphine formation from BN was measured by a simple HPLC-UV assay method, without extraction. The BN N-dealkylation activities in 10 human liver microsomal preparations were strongly correlated with microsomal CYP3A-specific metabolic reactions, i.e. triazolam 1'-hydroxylation (r = 0.954), midazolam 1'-hydroxylation (r = 0.928), and testosterone 6beta-hydroxylation (r = 0.897). Among the eight recombinant CYP enzymes studied (CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4), only CYP3A4 could catalyze BN N-dealkylation. The apparent KM value for recombinant CYP3A4 was similar to that for human liver microsomes (23.7 vs. 39.3 +/- 9.2 microM). The demonstration of BN N-dealkylation by recombinant CYP3A4 and the agreement in the affinities (apparent KM values) of human liver microsomes and recombinant CYP3A4 provide the most supportive evidence for BN N-dealkylation being catalyzed by CYP3A4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号