首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Total lipid content and fatty acid composition were determined for wild and cultivated gilthead seabream and sea bass. Fatty acid analyses were carried out by gas chromatography‐ mass spectrometry. Respective total lipid content of flesh in cultivated gilthead seabream and sea bass were 1.7‐5.0‐times those of wild samples. Palmitic acid (C16:0) and oleic acid (C18:1n‐9) were the major fatty acids respectively among the saturated fatty acids and monounsaturated fatty acids of each fish species. It is noteworthy that both linoleic acid (C18:2n‐6) and arachidonic acid (C20:4n‐6) were predominant in total n‐6 polyunsaturated fatty acids in the respective cultivated and wild types. Eicosapentaenoic acid (C20:5n‐3) and docosahexaenoic acid (C22:6n‐3) amounts were significantly higher in flesh of cultivated fish than in wild fish.  相似文献   

2.
The cell growth and lipid accumulation process of Cryptococcus albidus were investigated using acetic acid as the sole carbon source at different concentrations. C. albidus showed high tolerance to acetic acid at a high concentration of 30 g L?1. The highest lipid content (32.69 ± 0.50 %) and lipid yield (0.96 ± 0.05 g L?1) were both obtained in the medium with an initial acetic acid concentration of 30 g L?1 on day five. Interestingly, the maximum lipid content and lipid yield was obtained on a different day in a medium with different acetic acid concentration. The fatty acid composition of the lipids accumulated by C. albidus was 16–23 % palmitic acid (C16:0), 3–5 % linolenic acid (C18:3), 42–51 % linoleic acid (C18:2) and 23–27 % oleic acid (C18:1), which was similar to that of soybean oil; thus, this microbial oil has great potential value as a renewable biodiesel feedstock. This work also provides valuable information for further research to use cheap substrates containing a high concentration of acetic acid (such as lignocellulosic hydrolysates), which is an economical and environmentally friendly form of microbial oil production.  相似文献   

3.
In this study, the proximate and fatty acid compositions of the muscle tissue of 186 samples of fish belonging to fifteen species of freshwater fish harvested in subalpine lakes (bleak, shad, crucian carp, whitefish, common carp, pike, black bullhead, burbot, perch, Italian roach, roach, rudd, wels catfish, chub and tench) were investigated. Most of the fish demonstrated a lipid content in the fillet lower than 2.0 g 100 g?1 wet weight (range 0.6–9.7). A strong relationship between feeding behavior and fatty acid composition of the muscle lipids was observed. Planktivorous fish showed the lowest amounts of n‐3 fatty acids (p < 0.05), but the highest monounsaturated fatty acid (MUFA) contents, in particular 18:1n‐9. Conversely, carnivorous fish showed the highest amounts of saturated fatty acids and n‐3 fatty acids (p < 0.05), but the lowest MUFA contents. Omnivorous fish showed substantial proportions of n‐3 fatty acids and the highest contents of n‐6 fatty acids. Principal component analysis showed a distinct separation between fish species according to their feeding habits and demonstrated that the most contributing trophic markers were 18:1n‐9, 18:3n‐3, 22:6n‐3 and 20:4n‐6. The quantitative amounts n‐3 polyunsaturated fatty acid in muscle tissues varied depending on the fish species, the lipid content and the feeding habits. Some species were very lean, and therefore would be poor choices for human consumption to meet dietary n‐3 fatty acid requirements. Nevertheless, the more frequently consumed and appreciated fish, shad and whitefish, had EPA and DHA contents in the range 900–1,000 mg 100 g?1 fresh fillet.  相似文献   

4.
Alterations in the fatty acid distribution of total lipid extracts and 4 of the major lipid subclasses of serum in ponies fasted overnight and for 4 and 7 days were determined. Although increases in 16:0, 16:1, and 18:3 omega 3 were observed, decreased amounts of 18:0 and 18:2 omega 6 combined to cause no significant change in the saturated to unsaturated fatty acid ratio in the total extracts. Phospholipid became somewhat preferentially enriched in saturated fatty acids due to a decrease in 18:1, although this response was variable. The free fatty acid and triglyceride fractions both showed increases in relative amounts of 18:3 omega 3 and a decrease in 18:0 and a concomitant change in the saturated to unsaturated fatty acid ratio. This endogenous alteration was most likely due to the mobilization of an increased proportion of polyunsaturated fatty acids from tissue sites with their subsequent incorporation into triglyceride by the liver. It probably reflects the type of forage diet on which the animals had been maintained prior to the study. The fatty acid composition of the cholesteryl ester fractions was unchanged during fasting but contained appreciable amounts of the 18:2 omega 6 fatty acid.  相似文献   

5.
Lipids of some thermophilic fungi   总被引:1,自引:0,他引:1  
Total lipid content in the thermophilic fungi—Thermoascus aurantiacus, Humicola lanuginosa, Malbranchea pulchella var.sulfurea, andAbsidia ramosa—varied from 5.3 to 19.1% of mycelial dry weight. The neutral and polar lipid fractions accounted for 56.4 to 80.2% and 19.8 to 43.6%, respectively. All the fungi contained monoglycerides, diglycerides, triglycerides, free fatty acids, and sterols in variable amounts. Sterol ester was detected only inA. ramosa. Phosphatide composition was: phosphatidyl choline (15.9–47%), phosphatidyl ethanolamine (23.4–67%), phosphatidyl serine (9.3–17.6%), and phosphatidyl inositol (1.9–11.9%). Diphosphatidyl glycerol occurred in considerable quantity only inH. lanuginosa andM. pulchella var.sulfurea. Phosphatidic acid, detected as a minor component only inM. pulchella var.sulfurea andA. ramosa, does not appear to be a characteristic phosphatide of thermophilic fungi as suggested earlier. The 16∶0, 16∶1, 18∶0, 18∶1, and 18∶2 acids were the main fatty acid components. In addition,A. ramosa contained 18∶3 acid. Total lipids contained an average of 0.93 double bonds per mole of fatty acids, and neutral lipids tend to be more unsaturated than phospholipids.  相似文献   

6.
The n-6 and n-3 fatty acid status of developing organs is the cumulative result of the diet lipid composition and many complex events of lipid metabolism. Little information is available, however, on the potential effects of the saturated fatty acid chain length (8:0–16:0) or oleic acid (18:1) content of the diet on the subsequent metabolism of the essential fatty acids 18:2n-6 and 18:3n-3 and their elongated/desaturated products. The effects of feeding piglets formulas with fat blends containing either coconut oil (12:0±14:0) or medium chain triglycerides (MCT, 8:0±10:0) but similar levels of 18:1, 18:2n-6 and 18:3n-3, or MCT with high or low 18:1 but constant 18:2n-6 and 18:3n-3 on the fatty acid composition of plasma, liver and kidney triglycerides, phospholipids and cholesteryl esters, and of brain total lipid, were studied. Diet-induced changes in the fatty acid composition of lipid classes were generally similar for plasma, liver and kidney. Dietary 18:1 content was reflected in tissue lipids and was inversely associated with levels of 18:2n-6. Lower percentage of 18:2n-6, however, was not associated with lower levels of its elongated/desaturated product 20:4n-6 but was associated with higher levels of 22:6n-3. Feeding coconut oilvs. MCT resulted in lower 18:1 levels in all lipids, and higher percentages of 20:4n-6 in tissue phospholipid. Increasing the dietary n-6/n-3 ratio from 5 to 8 significantly increased tissue percentage of 18:2n-6 and decreased phospholipid 22:6n-3. In contrast to plasma, liver and kidney, brain lipid fatty acid composition was not influenced by the formula saturated fatty acid chain length, content of 18:1, or n-6/n-3 ratio. In summary, the studies show that the dietary requirement for n-6 and n-3 fatty acids may be influenced by the nonessential saturated and monounsaturated fatty acids fed concurrently.  相似文献   

7.
The fatty acid composition of cottonseed and com oils was determined before and after the technological hydrogenation process. In hydrogenated cottonseed and corn oils the essential fatty acid content (linoleic, 18:2 ω6) was decreased while the trans-18:1 acid was increased as compared to the native oils. The trans as well as the essential fatty acid contents in some consumeravailable hydrogenated fats were evaluated. The composition of cis and trans monoene isomers were also determined. This study revealed that some of the Egyptian consumer-available hydrogenated fats contain considerable amounts of trans acids.  相似文献   

8.
Jatropha curcus L. oil has emerged as one of the most important raw materials for biodiesel production. However, no detailed study has been reported on characterizing the lipid constituents of jatropha oil. The present study revealed that the total oil content of jatropha seeds was 32% with a composition of 97.6% neutral lipids, 0.95% glycolipids and 1.45% phospholipids. The fatty acid composition of total lipids, neutral lipids, phospholipids and glycolipids was also determined and found to contain oleic acid (18:1) and linoleic acids (18:2) as major fatty acids. The phospholipids fraction was further characterized and quantified and found to contain phosphatidyl choline (PC) 60.5%, phosphatidyl inositol (PI) 24% and phosphatidyl ethanolamine (PE) 15.5%. The fatty acid composition and the positional distribution of the fatty acids of individual phospholipids were also reported.  相似文献   

9.
The amount of linoleic acid required to prevent undesirable effects of C18trans fatty acids was investigated. In a first experiment, six groups of rats were fed diets with a high content oftrans fatty acids (20% of energy [en%]), and increasing amounts of linoleic acid (0.4 to 7.1 en%). In a second experiment, four groups of rats were fed diets designed to comparetrans fatty acids with saturated andcis-monounsaturated fatty acids of the same chain length at the 2 en% linoleic acid level. After 9–14 weeks, the oxygen uptake, lipid composition and ATP synthesis of heart and liver mitochondria were determined. The phospholipid composition of the mitochondria did not change, but the fatty acid compositions of the two main mitochondrial phospholipids were influenced by the dietary fats.Trans fatty acids were incorporated in all phospholipids investigated. The linoleic acid level in the phospholipids, irrespective of the dietary content of linoleic acid, increased on incorporation oftrans fatty acids. The arachidonic acid level had decreased in most phospholipids in animals fed diets containing 2 en% linoleic acid. At higher linoleic acid intakes, the effect oftrans fatty acids on the phospholipid arachidonic acid level diminished. However, in heart mitochondrial phosphatidylethanolamine,trans fatty acids significantly increased the arachidonic acid level. Despite these changes in composition, neither the amount of dietary linoleic acid nor the addition oftrans fatty acids influenced the mitochondrial function. For rats, a level of 2 en% of linoleic acid is sufficient to prevent undesirable effects of high amounts of dietary C18trans fatty acids on the mitochondrial function.  相似文献   

10.
Marine fishes are rich in n-3 polyunsaturated fatty acids (PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are extremely important for human health. The objective of our work was to determine the content and composition of lipids and fatty acids in the different tissues of cobia from China and to evaluate their nutritional value. The results showed that cobia from China was rich in lipids; the neutral lipid content was above 82%; the content of cholesterol and phospholipid was low. Eighteen fatty acids were identified. Myristic (C14:0), palmitic (C16:0), and stearic acids (C18:0) were the main saturated acids; palmitoleic (C16:1n-7) and oleic acid (C18:1n-9) were the main monounsaturated fatty acids. EPA and DHA were the main PUFA; n-3 and n-6 PUFA were present as 12–18% and 2.6–3.2% of the total fatty acids, respectively. The n-6/n-3 ratio was in the range from 0.18 to 0.22, which was far lower than that (5:1) recommended by WHO/FAO. Therefore, cobia lipids from China have a high nutritional value.  相似文献   

11.
The seasonal effects on the fatty acid composition of triacylglycerol (TG) and phospholipid (PL) in the gonad and liver of Mastacembelus simack were determined using the gas chromatographic method. The most abundant fatty acids in the investigated seasons and tissues were palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1n‐9), palmitoleic acid (C16:1n‐7), arachidonic acid (C20:4n‐6), eicosapentaenoic acid (C20:5n‐3), and docosahexaenoic acid (C22:6n‐3). The distribution proportions of ∑SFA (saturated fatty acids), ∑MUFA (monounsaturated fatty acids) and ∑PUFA (polyunsaturated fatty acids) were found to be different among PL and TG fractions in all seasons. The total lipid content of gonad and liver were 1.32 (November)–4.90 % (September) and 1.32 (September)–3.94 % (January), respectively. It was shown that the total lipid and fatty acid compositions in the gonad and liver of fish were significantly influenced by seasons.  相似文献   

12.
The purified crude lipid of Psoralia corylifolia seeds was subjected to lipid class and fatty acid analysis by thin layer and gas chromatography. The lipid classes identified were triacyl glycerol, free fatty acid, diacyl glycerol, mono acyl glycerol, hydrocarbon-waxester and polar lipid fractions. Most of the fractions were found to contain high level of C18:1 while C18:0, C18:3 and C20:0 were also found to be present in all the lipid fractions. It has been observed that the diacyl and monoacyl glycerol fractions contain significant amounts of C14:0 and C18:0 while the hydrocarbon-waxester fraction was rich in C22:0. The polar lipids contain high level of C18:3 and low level of C18:1 as compared to other lipid fractions. The fatty acid composition of the whole oil was also determined and found to be similar to other fractions. Unidentified long chain fatty acids were also present in significant amounts in all the lipid fractions.  相似文献   

13.
The fatty acid composition and total trans fatty acid content in 10 margarines produced in Turkey were determined by capillary gas chromatography and Fourier transform‐infrared spectroscopy (FT‐IR) spectroscopy. The fatty acid composition ranged as follows: saturated fatty acids, C16:0 (palmitic) 11.3 to 31.8% and C18:0 (stearic) 5.7 to 8.7%, monounsaturated fatty acids, C18:1 (oleic) 21.8 to 35.7% and C18:1 trans isomers 0.4 to 27.4%, polyunsaturated fatty acid, C18:2 linoleic acid 5.2 to 40.2%. Some positional isomers of C18:1 as cis‐11‐octadecenoic acid varied from 0.7 to 4.6% and cis‐13 trace to 2.4%. The total trans fatty acid contents were between 0.9 and 32.0% when measured with capillary gas chromatography and between 0 and 30.2% with FT‐IR spectroscopy. Some of the margarines analyzed contained trace amount of trans fatty acids which could not be detected by FT‐IR spectroscopy.  相似文献   

14.
Antifungal fatty acids produced by the biocontrol fungusSporothrix flocculosa were studied on the basis of their effect on growth and cellular lipid composition of three fungi,Cladosporium cucumerinum, Fusarium oxysporum, andS. flocculosa, whose growth was decreased by 51, 33, and 5% respectively, when exposed to 0.4 mg fatty acid per ml. The sensitivity to fatty acid antibiotics fromS. flocculosa was related to a high degree of unsaturation of phospholipid fatty acids and a low proportion of sterols. The major responses of sensitive fungi to sublethal doses of antifungal fatty acids from liquid culture ofS. flocculosa were: (i) a decrease in total lipid; (ii) an increase in the degree of fatty acid unsaturation (18∶1>18∶2 > 18∶3); (iii) an increase in free fatty acids and phosphatidic acid and a decrease in total phospholipids; and (iv) an increase in sterol/phospholipid ratio. These modifications in lipid composition led to an increase in membrane fluidity in sensitive fungi, as demonstrated by assessment of fluorescence anisotropy using liposomes and 1,6-diphenyl-1,3,5-hexatriene probe. This alteration in the physical state of lipids appears to be responsible for the previously demonstrated alteration of membrane structure and function in fungi confronted toS. flocculosa.  相似文献   

15.
Li D  Zhang Y  Sinclair AJ 《Lipids》2007,42(8):739-747
The total lipid content, composition of main lipid classes, composition of sterols and composition of fatty acids in the main glycerolipids of Perna viridis were analyzed through four seasons using TLC-FID and GLC. Mussel samples were collected during different seasons between 2003 and 2004 from Shengsi Island, Zhejiang Province, China and stored frozen prior to freeze-drying and lipid extraction. Ten grams of dried mussel powder of each season were analyzed. Total lipid content ranged from 14.5 g/100 g in spring month to 7.8 g/100 g dried mussel powder in autumn month. The predominant lipid in spring month was triacylglycerol (TAG), however, in the other three seasons the phospholipids (PL) was the main lipid class. The most abundant fatty acid in TAG, PL and phosphatidylcholine (PC) was 16:0, with the summer samples having the highest proportion (24-30% of total fatty acid) and winter the lowest (14-22%). In phosphatidylethanolamine (PE), the spring samples had the highest proportions of 16:0. The predominant polyunsaturated fatty acids (PUFA) were 22:6n-3 and 20:5n-3 in TAG, PL, PE and PC (25-40%). The proportions of 22:6n-3 and 20:5n-3 were higher in spring than in other seasons in PL and PE. There were nine sterols identified, with cholesterol being the predominant sterol, and other main ones were desmostersol/brassicasterol and 24-methylenecholesterol. Proportions of other fatty acids in different lipid fractions and the sterol compositions as well also varied seasonally. There were subject to the seasonal variations. Differences in lipid content and composition, fatty acid composition in different lipid fractions may be caused by multiple factors such as lifecycle, sex, variation of plankton in different seasons and temperature, which could influence physiological activities and metabolism.  相似文献   

16.
Chu  Fu-Lin E.  Dupuy  John L. 《Lipids》1980,15(5):356-364
The total lipid and fatty acid content of 3 algal species,Pyramimonas virginica, Pseudoisochrysis paradoxa andChlorella sp., which have been successful as food sources for rearing larvae of the American oyster,Crassostrea virginica, was determined. Of the fatty acids of ω6 and ω3 families which have been shown to be essential fatty acids for normal growth in many animals, only the ω6 fatty acids were found to be higher in these 3 species of algae than in the traditional oyster larvae diet which consists of the algaeMonochrysis lutheri andIsochrysis galbana. The major fatty acid constituents of the total lipids of the 3 species were the C12, C14, C16 and C18 saturated fatty acids and the C16 and C18 mono- and polyunsaturated acids. These components constituted 70–93% of the total lipid in cultures of all ages. There were modest amounts of C20 and C22 polyunsaturated acids; some of these existed only in trace amounts. InP. virginica andChlorella sp., hexadecanoic acid was dominant (23–39%). The presence of large quantities of tetradecanoic acid (22–26%) and oleic acid (17–21%) was characteristic ofP. paradoxa. Chlorella sp. had the highest proportion of octadecatrienoic acid (18∶3ω3) which accounted for up to 17% of the total lipids. γ-Linolenic acid (18∶3ω6) was found only inChlorella sp., but in the 5th-day culture only. The lowest proportion of total polyethylenic acid was inP. paradoxa; however, lipid analyses showed this alga had the most lipid/individual cell. Some variations were observed in the fatty acid composition with age of the culture. Contribution No. 883 of the Virginia Institute of Marine Science, Gloucester Point, VA 23062.  相似文献   

17.
The fatty acid composition of triglyceride and total phospholipid fractions of adultSchistosoma mansoni has been examined. Both triglyceride and phospholipid contained fatty acids varying in chain length from 12 through 24 carbons; trace amounts of shorter chain components were found in the triglyceride fraction. A docosahexaenoic acid in the triglyceride fraction represented the highest degree of unsaturation encountered. Branched chain fatty acids of 16 and 18 carbons were found in both phospholipid and triglyceride. Examination of fatty acids from fluke total lipid revealed the presence of small amounts of odd numbered carbon fatty acids varying in chain length from 13 through 23 carbons.  相似文献   

18.
The intramolecular structure of dietary triacylglycerols (TAG) influences absorption. In this study, two different pharmaceutical formulations were compared containing TAG differing in fatty acid profiles and intramolecular structures: LML and MLM, where M represented medium‐chain fatty acids (MCFA; 8:0) and L represented long‐chain fatty acids (LCFA). Lymph was collected from thoracic duct‐cannulated canines for 12 h and the fatty acid composition was determined. The lymphatic transport of total fatty acids was significantly higher than the amount dosed; hence, the small exogenously dosed lipid recruited a large pool of endogenous fatty acids. The LML vehicle led to a significantly higher total fatty acid transport than the MLM vehicle. The amount of 8:0 recovered in lymph was almost similar and low for both groups. The amount of LCFA recovered from the animals dosed with the LML vehicle was generally higher than from the animals dosed with the MLM vehicle; however, statistically significant differences were only found for 18:0 and 18:3n‐3. In conclusion, these results indicated that the fatty acid profile and intramolecular structure of administered TAG influenced the absorption of fatty acids in canines, also when the TAG was incorporated into a pharmaceutical formulation in low amounts.  相似文献   

19.
Buffalo meat is considered in Italy as an alternative product for its good nutritional characteristics. The influence of three cooking methods (boiling, grilling and frying) on the chemical and lipid composition of buffalo meat was evaluated. All the treatments reduced the moisture and increased protein, ash and fat content. The increase in fat content was higher after frying due to the incorporation of fat from olive oil. Fried meat had lower saturated fatty acid content due to the incorporation of mono-unsaturated (C18:1) fatty acids from oil. The incorporation of oil fatty acids caused a decrease in conjugated linoleic acid relative content. Moreover, fried meat showed the highest levels of the unhealthy trans fatty acids. Therefore, frying was shown as the worst cooking methods regarding human health. Boiling and grilling increased thiobarbituric acid reactive substances, while frying had no effect on them.  相似文献   

20.
The fatty acid composition in the lipid phase of 64 commercially available baby food products, of two different batches each, was analyzed. They comprised vegetable products for babies of five, eight, and twelve months and fruit and cereal products of three different brands. The comparison of the composition of the saturated (C18:0, C16:0, C14:0, C12:0, C10:0), the unsaturated monoenoic (C18:1n9 and C16:1n7) and the polyenoic (C18:2n6 and C18:3n3) fatty acids was determined by gas chromatography. All analyzed baby food products provided well‐balanced amounts of saturated fatty acids on the one hand (saturated fatty acids (SFA) 31—37% of total fatty acids) and unsaturated fatty acids on the other hand (monounsaturated fatty acids (MUFA) 23—26% and polyunsaturated fatty acids (PUFA) 38—46% of total fatty acids, respectively). The P/S‐ratio in vegetable products of five months reached a value of 1.5, in all other analyzed products it was around 1. The n‐6:n‐3‐ratio was 10:1 in fruit and cereal products, followed by 11.6:1 in vegetable products of eight and twelve months and 13.5:1 in the group of vegetable products of five months. Since there is a lack of arachidonic acid and docosahexaenoic acid in baby food products, it might be of advantage to consider whether such products should be supplemented by these long‐chain polyunsaturated fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号