首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
桥墩局部冲刷分析及防护对策   总被引:2,自引:0,他引:2  
河道中修建桥墩后,周围的水流情况会发生很大变化,从而引起桥墩周围产生局部冲刷。桥墩附近水流结构十分复杂,对于重要的工程问题,主要依靠物理模型试验分析局部冲刷。目前,国内外关于桥墩局部冲刷深度的计算方法主要有:非黏性土河床的桥墩局部冲刷公式,黏性土河床桥墩局部冲刷公式以及适用于黄河的冲刷计算公式。在确定冲刷深度后,进一步分析了桥墩基底埋置深度。同时,总结了浅基防护工程的几种类型。  相似文献   

2.
黄河下游桥渡冲刷计算问题探讨   总被引:2,自引:2,他引:2  
对现行规范推荐公式用于黄河下游桥渡冲刷计算存在的问题进行了探讨.结果表明:现行规范推荐的桥渡冲刷公式存在理论基础薄弱、适应性差等缺陷;进行非黏性土河床桥渡一般冲刷计算时,参量选取的任意性或人为性较大,受初始断面形态尤其是河槽最大水深的影响过大,不能反映水流泥沙条件变化对桥渡冲刷的影响,甚至不考虑河床组成的影响;进行非黏性土河床桥渡局部冲刷深度计算时,选用的泥沙起动流速公式使计算的桥墩局部冲刷深度偏大较多,且在概念上反映不出一般冲刷与局部冲刷的关联影响;采用黏性土河床桥渡冲刷公式计算时,因液性指数取值的人为性很大,故使计算的冲刷深度变化较大.为克服现行规范推荐公式的局限性,建议引用由输沙平衡原理建立的最大冲刷水深公式及黄河桥渡冲刷公式进行复核计算,并采用模型试验等手段进行验证.  相似文献   

3.
为解决设计规范推荐的黏性土冲刷公式计算长江流域河流桥渡冲深值偏小的问题,以岳阳-常德高速公路中拟建的松滋河安乡河段特大桥桥渡冲刷计算为例,采用<公路桥位勘测设计规范>推荐的黏性土冲刷公式及黄河桥渡冲刷公式进行了计算与比较.结果表明:①规范推荐的黏性土冲刷公式计算的冲刷深度偏小较多,而黄河桥渡冲刷公式考虑了一般冲刷和局部冲刷的相互影响、相互关联,计算结果与实际值较为接近,建议长江流域桥渡设计及冲刷计算时采用黄河桥渡冲刷公式进行计算或复核;②现规范推荐的黏性土冲刷公式结果不符合实际的主要原因是该公式除存在所依据的物理图形较为粗糙的缺陷外,公式中冲刷范围内黏性土的液性指数这一重要因子的取值也常不确切.  相似文献   

4.
本文根据实际桥梁工程桥墩冲刷计算,通过对比采用不同公式所得的结果,简要分析确定粉土河床桥墩局部冲刷计算的适用公式,并指出各参数对桥墩局部冲刷的影响,对局部冲刷计算提出一些建议。  相似文献   

5.
本文选取新建铁路跨越东音达木河特大桥为研究对象,采用非粘性土河床冲刷公式计算,对跨越处桥下20年一遇和100年一遇洪水对主槽、滩地的一般冲刷及对桥墩局部冲刷深度进行了计算分析。结果表明,20年和100年一遇洪水桥墩附近一般冲刷与局部冲刷之和为2.3 m和2.91 m,对两岸农田和桥墩基础均无不利影响,桥墩基础设计满足防冲要求。  相似文献   

6.
桥墩局部冲刷深度是桥梁设计的重要参数,但随着造桥技术的发展,桥墩局部冲刷计算的经验公式在计算尺寸较大的桥墩局部冲深时误差偏大。为解决此问题,在前人的研究基础上,根据统一量纲的原则建立了砂质河道桥墩局部冲刷深度经验公式,并考虑基台露出床面对冲刷的影响,对公式进行修正。将文中提出的公式与中美计算规范进行比较,结果表明:所提出的公式具有考虑因素较全面、量纲统一、适用于大型桥墩局部冲刷深度计算的优点;计算精度相比另外3种公式有较明显的提高,能更好地预测桥墩局部冲刷深度。研究成果可为桥墩布设、施工与防护等提供技术支撑。  相似文献   

7.
桥墩基础局部冲刷深度是确定基础埋深和保证桥梁安全运营的重要参数。针对桥墩基础局部冲刷深度不同的计算公式在量纲和谐、一般冲刷深度及河床形态和床沙组成对局部冲刷深度的影响进行对比分析,并结合工程算例,对计算结果进行对比。研究表明:对于单墩桥墩,HEC-18公式和包尔达柯夫公式计算较为简便,且HEC-18公式的计算结果偏安全;对于复杂群桩承台桥墩,中国铁道科学研究院新公式比较规范,采用公式所考虑的因素更多,结果更安全。  相似文献   

8.
文章采用非粘性土河床冲刷公式计算,对敖海营子中桥新建工程桥下一般冲刷及桥墩局部冲刷特征进行了计算分析。成果表明,现状两岸滩地平坦开阔,20年一遇洪水冲刷对两岸农田无影响;100年一遇洪水冲刷时,新建铁路桥一般冲刷加局部冲刷为6.3 m,远小于桥墩基础埋深30~32 m,桥墩基础设计满足防冲要求。  相似文献   

9.
文章运用65-1改进公式计算了某横跨内河的小型桥梁桥墩周围的最大冲刷坑深度,利用透水六脚体对桥墩进行了局部冲刷防护并进行了优化设计,最后分析了桥墩局部冲刷透水六脚体防护工程的防护效果。  相似文献   

10.
人工填筑黏性土起动冲刷特性试验   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究人工填筑黏性土起动和冲刷特性,采用资料分析和试验相结合的方法,研究人工填筑黏性土的起动冲刷特性。根据试验资料,结合力学特性确定影响人工填筑黏性土起动冲刷的主要因素;根据试验结果分析人工填筑黏性土起动切应力、冲刷率分别与各自的影响因素之间的对应关系,提出了量纲和谐的起动切应力和冲刷率的公式,运用多元线性回归方法确定了公式中的系数和指数,并分析比较了人工填筑黏性土和黏性泥沙起动和冲刷特性。结果表明:人工填筑黏性土的黏结力比自然淤积固结的黏性泥沙大得多,较难起动和冲刷,需要较大的水流切应力;干密度对自然淤积黏性泥沙冲刷率影响比对人工填筑黏性土要大。  相似文献   

11.
精确模拟山区河流非均匀沙质河床桥墩的局部冲刷对桥梁设计和安全运行具有重要的意义。以黑石渡大桥河床床沙特征为背景,采用Flow3D软件开展非均匀沙质河床上双排圆柱形桥墩冲刷三维数值模拟研究。为考虑河床非均匀泥沙的悬移质运动、泥沙挟带、推移质输运等过程,在数值模拟过程中,根据非均匀沙质河床的颗粒分布曲线,对所筛取的各个级配范围内的颗粒采用其对应的中值粒径来表征。模拟得到了双柱排桥墩局部流场结构、河床的冲淤变化和上下游桥墩周围冲刷坑形态。研究表明:受桥墩阻水作用影响,墩前壅水、墩后跌水现象明显。墩周冲刷坑基本贯通整个墩周区域,受上游墩保护作用影响,下游墩冲刷坑的发育深度和规模小于上游墩。将数值模拟结果与试验结果进行了对比分析,二者吻合较好。研究成果可为深入开展非均匀沙质河床桥墩局部冲刷研究提供参考。  相似文献   

12.
冰盖条件下桥墩局部冲刷研究进展   总被引:2,自引:3,他引:2  
王军  苏奕垒  侯智星  程铁杰  隋觉义 《水利学报》2020,51(10):1248-1255
冬季,寒冷地区的河流会出现冰盖或冰塞现象。冰盖的存在使水流湿周增加,流速剖面与明流条件下完全不同,最大流速出现在河床表面和冰盖底部之间,具体位置取决于河床和冰盖的相对粗糙程度。因此,冰盖条件下桥墩局部冲刷过程不同于明流条件下的局部冲刷过程。明流条件下的桥墩局部冲刷是国内外学者研究的热点问题之一,但关于冰盖条件下桥墩局部冲刷的研究工作却非常有限。在简要回顾明流条件下桥墩局部冲刷研究成果的基础上,对冰盖条件下桥墩局部冲刷的研究成果进行了综述和讨论,并提出了今后的研究方向。  相似文献   

13.
环翼式桥墩局部冲刷防护试验   总被引:1,自引:1,他引:0       下载免费PDF全文
基于桥墩局部冲刷原理,在传统防冲刷保护措施的基础上设计了一种能改变桥墩迎水面流态的新型环翼式桥墩,在不同流速、有无环翼式挡板以及不同的挡板位置下,试验研究了环翼式桥墩的局部防冲刷效果。研究结果表明,环翼式挡板可有效减小桥墩的局部冲刷,当桥墩上的挡板与河床的距离约为水深的1/3时,与无挡板的桥墩相比近底垂向流速最大可减小96%,最大冲坑深度可减小57.6%,环翼式桥墩防冲刷效果明显。  相似文献   

14.
王军  李志颀  程铁杰  隋觉义 《水利学报》2021,52(10):1174-1182
在寒冷地区,河道中冰盖的存在会改变河道流速分布。与明流条件相比,冰盖条件下水流最大流速点会向河床移动,加剧桥墩周围的局部冲刷。过度的局部冲刷会导致桥梁倒塌。基于水槽清水冲刷试验,对冰盖与明流条件下圆柱型桥墩局部冲刷随时间的变化进行了研究,试验结果表明:冰盖下桥墩局部冲刷速率大于明流。平衡冲刷深度比明流条件下的约大12%,且冲刷平衡所需时间比明流条件下的要约大10%。分析了水流强度与无量纲冲刷深度的关系以及冰盖与明流条件下冲刷深度变化速率的差异,给出了冰盖下局部冲刷深度随时间变化的经验方程,研究成果可供实际工程参考。  相似文献   

15.
受采砂等人类活动影响,高明大桥附近河床下切幅度达10 m,威胁到大桥安全与稳定。该文在分析桥墩附近河床冲刷现状及床沙特性的基础上,通过建立桥址附近河道平面二维水流数学模型,结合经验公式进行桥墩局部冲刷水力计算,预测桥墩局部冲刷坑范围和趋势,据此提出桥墩抛石防护方案,包括防护范围、块石粒径、抛石厚度等。经汛后检测,冲刷防护措施效果较好,可为珠江三角洲类似大桥冲刷防护工程应用提供参考。  相似文献   

16.
圆柱桥墩局部冲刷机理试验研究   总被引:4,自引:0,他引:4       下载免费PDF全文
为进一步探索圆柱桥墩局部冲刷机理,分别从桥墩附近水流流速分布特性、桥墩冲刷特性以及冲刷与流速相互关系对圆柱桥墩顺水流向不同布置方式的局部冲刷水力学特征进行了模型试验研究.结果表明:两排10桥墩顺水流(桥墩轴向与水流方向夹角分别为90°,60°,30°,0°)均匀布置时,桥墩轴向与流向夹角越小,流速在桥墩上下游紊动越小,对下游影响范围越大,且流速越大,冲刷深度和范围越大.顺水流布置0°夹角时,冲刷程度最小,在相同流量下,冲刷稳定历时最短;垂直布置(90°夹角)时,冲刷程度最严重,所需冲刷稳定历时最长,且随着流量的增大,桥墩墩前冲刷坑最深位置逐渐向水槽中间偏移.  相似文献   

17.
桥墩基础施工河床局部冲刷研究   总被引:2,自引:2,他引:2  
天然河流中水流受到建筑物的阻碍时,产生紊动涡旋,局部河床泥沙在水流紊动剪应力作用下起动,并被涡旋流带向下游,建筑物局部河床因此受到侵蚀而下降,形成局部冲刷坑。跨河大桥桥墩的局部冲刷就是如此。桥墩及其基础与水深或河床的相对位置影响着局部冲刷深度的发展。本文通过室内试验研究了桥墩下部钢围堰基础施工的相对高程对河床局部冲刷最大深度的影响,探讨了工后钢围堰顶部处于相对水深的不同高度时局部冲刷发展的规律,并将这些影响因素用墩形系数法计入局部冲刷深度计算中,给出了计算公式。本文的研究对目前跨江及跨海大尺度桥墩基础工程施工具有指导意义。  相似文献   

18.
Local scour around bridge piers and abutments is one of the most significant causes of bridge failure. Despite a plethora of studies on scour around individual bridge piers or abutments, few studies have focused on the joint impact of a pier and an abutment in proximity to one another on scour. This study conducted laboratory experiments and flow analyses to examine the interaction of piers and abutments and their effect on clear-water scour. The experiments were conducted in a rectangular laboratory flume. They included 18 main tests (with a combination of different types of piers and abutments) and five control tests (with individual piers or abutments). Three pier types (a rectangular pier with a rounded edge, a group of three cylindrical piers, and a single cylindrical pier) and two abutment types (a wing–wall abutment and a semi-circular abutment) were used. An acoustic Doppler velocimeter was used to measure the three-dimensional flow velocity for analyses of streamline, velocity magnitude, vertical velocity, and bed shear stress. The results showed that the velocity near the pier and abutment increased by up to 80%. The maximum scour depth around the abutment increased by up to 19%. In contrast, the maximum scour depth around the pier increased significantly by up to l71%. The presence of the pier in the vicinity of the abutment led to an increase in the scour hole volume by up to 87% relative to the case with a solitary abutment. Empirical equations were also derived to accurately estimate the maximum scour depth at the pier adjacent to the abutment.  相似文献   

19.
杭州湾跨海大桥海中平台位于杭州湾大桥中间位置,海中平台下部群桩结构与平台上游各系列匝道墩、大桥主墩形成了复杂的墩群结构,受其影响,海中平台区域海床冲刷较为剧烈。为深入了解海中平台区海床冲刷特性,应用多年实测地形测量资料,对海中平台区的海床地形特征、建桥前后海床冲淤变化规律进行了分析,研究各匝道墩最低冲刷高程分布,并应用数值计算模型分析了海中平台区的水动力分布特征,揭示了匝道墩海床冲刷机理。研究发现,与建桥前相比,海中平台区大桥轴线上游500 m~下游1 000 m范围内海床发生整体一般冲刷,在海中平台南北两侧,受局部绕流影响,产生明显的局部冲刷,最大冲刷达14 m。平台南北两侧向上游延伸的局部冲刷槽影响到平台上游的匝道墩,导致部分匝道墩附近海床高程普遍较低。整体来看,位于桥轴线上游的ZB和ZC系列匝道墩因受到海中平台绕流及主墩绕流的叠加影响,导致其最低海床高程明显低于位于桥轴线下游的ZD和ZE系列匝道墩,各匝道墩最低海床高程与涨潮流流速大小具有一定的相关性。  相似文献   

20.
针对并线桥墩在多沙河流上的局部冲刷问题,采用1:100正态模型水槽对桥梁平面正交在不同形状、上下游不同桥梁间距的桥墩布置进行了系列试验研究,对上下游桥墩在不同水流强度、不同桥梁间距条件下的局部冲刷过程进行系统观测和分析.结果表明,桥墩并线时,桥墩周围水流流态较为复杂,受上游墩阻水绕流影响,下游墩周围水流紊动强度减小,流...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号