首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
以榆林某公司的兰炭为原料,KOH粉末为活化剂制备活性炭。通过改变活化过程中时间、温度、炭碱比等因素,从而探究活性炭的碘吸附能力。通过响应曲面优化处理活性炭制备过程中活化因素,从而确定最佳工艺。采用比表面积测定,红外光谱分析,扫描SEM电镜等对活性炭结构及性能表征进行分析结果表明,上述活化条件都会影响活性炭吸附能力和孔隙结构。当活化过程中的温度达到750℃,时间为0.5 h,炭碱比为1:3的时候,KOH的活化效果最佳,所制样品的碘吸附值最大且为1 162.91 mg/g,其BET比表面积可达655.15m2/g,Langmuir比表面积为908.22 m2/g。通过红外分析可知活性炭与预处理兰炭原料红外光谱图走势极其相似,只是活性炭出现了较强的芳基烷基醚C-O伸缩振动峰。通过扫描显微电镜分析可知与原料兰炭相比,活性炭样品组织表面非常粗糙并且有大量的孔隙出现,样品结构非常疏松。  相似文献   

2.
微波辐射-KOH活化兰炭粉制备活性炭   总被引:4,自引:0,他引:4  
研究了以兰炭粉为原料,KOH为活化剂,采用微波辐射法制备活性炭的可行性。探讨了微波功率、碱炭质量比和活化时间对活性炭吸附性能的影响。同时采用美国ASAP-2020吸附仪测定了所制备活性炭的N2吸附脱附等温线和孔径分布,采用红外光谱分析了样品的表面官能团。结果表明:微波功率为700 W,碱炭质量比为3,活化时间为15 min工艺条件下制得的活性炭碘吸附值为694.5 mg/g,比表面积为513.62 m2/g,总孔容为0.510 3 cm3/g,平均孔径为3.973 8 nm,该活性炭为中孔型。以兰炭粉为原料,传统加热和微波加热制备的活性炭红外光谱图其峰形基本一致,只是峰强不同。  相似文献   

3.
采用物理化学活化法处理干熄兰炭进一步制备活性炭,探究了活化剂选择、碱炭比、活化温度、活化时间对活性炭吸附维生素B12溶液的影响,并且对最优条件下制备的活性炭进行SEM、BET、FIIR分析.研究表明,对比不同活化剂(ZnCl2、H3PO4、KOH)饱和溶液浸渍后得到的活性炭吸附维生素B12吸附量,KOH活化制备活性炭的...  相似文献   

4.
以改质煤沥青为原料,采用KOH活化法制备活性炭。探讨了碱炭比、炭化时间、活化温度、活化时间等对活性炭吸附性能的影响。结果表明,制备改质煤沥青基活性炭的最佳条件为:碱炭比为4,炭化时间为45 min,活化温度840℃,活化时间140 min,在此条件下,制得改质煤沥青基活性炭的碘吸附值为1 152.8 mg/g。  相似文献   

5.
以咖啡壳为原料、KOH为化学活化剂制备高性能活性炭,在单因素试验探索活化时间、活化温度和碱炭比对活性炭碘吸附值影响的基础上,运用响应面法进行活化工艺参数优化。通过对模型优化确定最佳工艺参数为活化时间5 min、活化温度950℃和碱炭比(KOH和咖啡壳炭化料质量比,下同)4∶1;该条件下制备的活性炭的碘吸附值为2 214 mg/g(实验值),和预测值(2 209.5 mg/g)基本相符,验证了模型的有效性。  相似文献   

6.
化学活化法制备玉米芯基多孔炭材料   总被引:1,自引:1,他引:0  
以玉米芯为原料,采用化学活化法可制备多孔炭材料。分别考察了活化剂、碱/炭质量比对多孔炭比表面积以及孔隙结构的影响。结果表明:由Na2CO3活化所得活性炭的中孔较多,比表面积小;而KOH因其强碱性,适合制备微孔发达的高比表面积活性炭,在碱炭比为31时能够制备总孔容和比表面积分别高达1.339cm3/g和2342m2/g的样品;用混合碱(Na2CO3:KOH:C=1:2:1)活化样,其特殊之处在于其微孔所占比例达到93.38%,且中孔分布更窄(2~4.5nm),说明混合碱的作用更易于制备微孔发达的活性炭。  相似文献   

7.
以煅前石油焦为原料,采用KOH化学活化法制备超级电容器用高比表面积活性炭,通过考察碱炭比、活化温度、活化时间和原料预处理方式对活性炭结构和性能的影响,探讨了影响高比表面积活性炭结构和性能的主要因素,确立了制备超级电容器用高比表面积活性炭的最佳工艺条件。  相似文献   

8.
高比表面积煤基活性炭的制备及其吸附性能的研究   总被引:2,自引:0,他引:2  
以太西无烟煤为原料,KOH为活化剂,采用化学活化法制备高比表面积煤基活性炭,着重考察了碱炭比、活化温度、活化时间对活性炭吸附性能的影响。研究结果表明:当碱炭比为4、活化温度为800℃、活化时间为1h时,可以制得比表面积达3215m^2/g,碘吸附值达2884mg/g,亚甲蓝吸附值达548mg/g的高比表面积煤基活性炭。  相似文献   

9.
活性炭作为一种以碳物质为前驱体的吸附材料,活性炭的孔隙结构比较发达,具有较高的比表面积和较强的吸附能力,在诸多行业中均具有广泛的应用。本文以兰炭原料采取高温活化方法制造活性炭实验为例,对实验过程中所采取的兰炭种类,以及高温活化温度与时间,对应的碱炭比和碱炭混合方式等给活性炭吸附性能带来的影响进行分析,得出选择5:1的碱炭比,以氢氧化钾干粉法在800℃下活化一小时,是兰炭制活性炭的最佳工艺。本人有幸担任陕西东鑫垣化工有限责任公司的技术副总,我公司有120万吨/年的兰炭产品,对兰炭的下游产品做了一点研究探讨。  相似文献   

10.
高硫高灰煤脱灰脱硫预处理后采用KOH活化法制备活性炭.考察了碱炭比、活化温度、活化时间以及灰分、硫分含量和表面活性剂等对制备的活性炭吸附铜离子的影响.结果表明,在活化温度为820℃,活化时间为1.5h,碱炭比为2.5的条件下制得活性炭比表面积为1 004.5m2/g,铜离子去除率为67.8%;煤中灰分的脱除和添加表面活性剂有利于提高活性炭的吸附性能,但脱硫煤基活性炭吸附性能降低.  相似文献   

11.
以武钢焦化公司焦油渣为原料,KOH为活化剂,采用正交实验研究了活化温度、活化时间、碱炭比(氢氧化钾与焦化除尘灰的质量比)和炭化温度对所制活性炭吸附性能的影响,得出制备焦油渣基活性炭影响因素主次顺序为活化温度、活化时间、碱炭比、炭化温度,最佳活化条件为活化温度为800℃,活化时间为100min,碱炭比为4:1,炭化温度为400℃。在此条件下制备活性炭的碘吸附值为1300.765mg/g。  相似文献   

12.
以椰壳炭化料为原料,KOH为活化剂,在不同工艺条件下制备了超级电容器用活性炭电极材料。考察了碱炭比、活化温度和活化时间对活性炭孔隙结构及其用作电极材料的比电容的影响。结果表明,在KOH与椰壳炭化料质量比为4:1,活化温度800℃,活化时间60 min的条件下,可制得比表面积2891 m2/g,总孔容积1.488 cm3/g,中孔率73.6%,比电容达235 F/g的优质活性炭电极材料。  相似文献   

13.
以七台河煤与依兰煤进行配煤实验研究,在七台河煤与依兰煤配比1/1,碱炭比6/1,活化温度850℃,炭活化时间120min条件下对活性炭制备炭活化动力学进行研究。结果表明:以KOH为活化剂,配煤活化反应速率在800~950℃范围内,对烧失率B为一级反应,由阿仑尼乌斯公式可求出反应活化能为101.4032kJ·mol^-1,指前因子为3.1382×10^4。  相似文献   

14.
李玉甫 《辽宁化工》2010,39(9):916-917,920
以煤为原料,KOH为活化剂制备活性炭。建立了静态吸附装置,并通过该装置研究了90#汽油在不同活性炭样品上的吸附性能。在制备过程中,考察了碱炭比、活化温度、活化时间对活性炭吸脱附性能的影响。研究发现,常温常压下活性炭对汽油饱和蒸气的吸附性能受多个参数的影响,其中BET比表面积影响最大,另外较大的孔、较宽的孔径分布,有利于脱附。同时得到最优的制备条件,碱炭比为5:1、活化温度800℃、活化时间1h。  相似文献   

15.
以气化稻壳炭(GRHC)为原料,KOH为活化剂制备活性炭,研究了不同活化温度和碱炭比对活性炭得率、比表面积、孔径分布以及碘值的影响.利用全自动气体吸附分析仪、X射线衍射仪、傅里叶变换红外光谱仪、扫描电镜等仪器对活性炭的理化性质进行表征,并通过吸附等温线、吸附动力学探讨其对甲基橙的吸附机制.结果表明:活化时间为1h时,随...  相似文献   

16.
以农业废弃物棉秆为原料,采用氢氧化钾活化法制备活性炭,并用于吸附含苯酚废水中的苯酚。棉秆基活性炭的最佳制备条件为棉秆先炭化,以KOH溶液为活化剂,KOH与棉秆炭的质量比(物料比)1.5:1,活化温度800 ℃、活化时间70 min,此条件下制备的棉秆活性炭亚甲基蓝的吸附值为342.33 mg/g,碘吸附值为1 368.65 mg/g,其BET比表面积达到了1 735.94 m2/g,总孔容积0.36 cm3/g,平均孔径2.33 nm。将此活性炭用于吸附苯酚,苯酚质量浓度60 mg/L的50 mL废水中,当pH值为7,吸附时间2 h,活性炭投放量为50 mg时,苯酚去除率最高可达98%。对此吸附过程进行动力学分析,结果表明准二级动力学模型能很好的描述此活性炭吸附苯酚的过程。  相似文献   

17.
中间相沥青微球的活化   总被引:5,自引:0,他引:5  
用KOH为活化剂,在不同活化条件下对中间相青微球进行活化,制备出比表面积为3182m^2/g,总孔容为2.45mL/g,苯吸附值为1320mg/g的高比表面积活性炭微球。研究了了KOH配比、活性温度和活化时间对活性炭微球的收率、比表面积和苯吸附值的影响。研究表明:随着KOH配比量或活化温度的提高,活化收率下降,活性炭微球的比表面积和七吸附值升高到一定值后下降;延长活化时间使活化反应进行完全,活性炭微球的活化收率、比表面积和苯吸附值仅有轻微变化。  相似文献   

18.
以煤系针状焦生焦为原料,KOH为活化剂,制备了用于超级电容器电极材料的活性炭。以3 mol/L KOH为电解液,用三电极电化学系统测试了活性炭的电化学性质;考察了活化剂用量对活性炭电化学性质的影响。研究结果表明:活化过程中,随着碱含量的增加,活性炭的电化学性能逐渐提高。当碳碱比为1∶3时,活性炭的比表面积达到2572.7 m2/g;电流密度为1 A/g时,其质量比电容达到316 F/g。循环5000圈之后,比电容保持在95.7%,库仑效率保持在97.0%。采用两电极系统,进一步考察了活性炭的电化学性能,以1 mol/L Na2SO4为电解液,电压窗口拓宽至1.8 V,循环伏安曲线同样展现出良好的矩形,能量密度和功率密度分别为20.8 W·h/kg和230 W/kg。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号