首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
为了减少煤炭燃烧过程中NOx的排放,在管式炉中进行了煤与金属助剂(FeCl3、NiCl2)的热解实验,研究了助剂负载量、热解温度、助剂添加方式对氮迁移及N2产率的影响并且对复合助剂作用机理进行了探讨。结果表明:随着助剂负载量的增加,氮脱除率及N2产率呈现先增加后趋于稳定的趋势,且负载量以0.8%Fe复合1.0%Ni为最佳。在700~1000℃的热解温度范围内氮脱除率及N2产率随热解温度的增加而增加。对煤进行溶胀处理添加复合助剂后,氮脱除率及N2产率要优于未经处理的煤样。铁基助剂与镍基助剂在催化煤热解氮迁移过程中形成互补,铁基助剂的添加增加了镍基助剂的活性,弥补了单助剂的劣势,且复合助剂相比于单助剂有更强的氮脱除效果并且N2产率达到最高39%。铁镍复合助剂对煤中N-5转化为N2的催化效果更加明显,因为复合助剂对吡咯的内氢转移和开环有更强的催化作用。本研究能够为煤炭洁净化利用提供理论和实验依据。  相似文献   

2.
铜川煤催化加氢热解行为的研究   总被引:4,自引:2,他引:2  
利用热重分析仪考察了铜川煤的热解及催化加氢热解行为.实验发现,Y分子筛催化加氢热解的第二热解阶段的峰温比原煤氮气下热解降低约85 C,热解转化率相对提高9.8%.NiS有利于热解转化率的提高,其催化加氢热解的转化率比原煤氮气下热解相对提高了13.8%,峰温降低约42 C.经动力学计算发现,催化剂的加入降低了热解反应的活化能.  相似文献   

3.
氧化铁与碳酸钾对煤温和气化的影响   总被引:5,自引:0,他引:5  
对神木煤进行了流化床煤温和气化研究,考察了氧化铁、碳酸钾对煤温和气化产物产率,气体组成,半焦组成的影响。试验结果表明:添加氧化铁后,煤气中H2产率显著增加,CO产率明显下降,添加碳酸钾后,H2产率增幅较小,CO,CH4及其它气态烃产率基本不变,表明碳酸钾对烃类裂解反应无明显催化作用。通过对所得半焦组成分析,发现添加碳酸钾所得半焦中硫,氮含量比原煤热解半焦有所增加,添加氧化铁的得半焦中硫,氮含量无明  相似文献   

4.
以半焦作为微波吸收剂和CH4裂解催化剂,在固定床反应器上考察了CH4气氛下神木煤微波热解特性,对CH4气氛下神木煤-半焦混合物在不同温度(450℃~700℃)下微波热解产物的生成规律进行了研究,并与相同条件的N2气氛下微波热解结果进行了比较.研究表明,CH4气氛下神木煤的微波热解半焦产率比N2气氛下的半焦产率低;而焦油产率和热解水产率高于相同条件N2气氛下的焦油和热解水产率.在CH4气氛下煤-半焦混合物微波热解,H2和CO产率高于N2气氛下的结果,而CO2产率低于N2气氛下微波热解的CO2产率.综合对比两种气氛下热解产物的生成规律可知,在半焦催化作用下,CH4在微波加热条件下可以实现对神木煤的直接加氢,提高煤的热解转化率.  相似文献   

5.
在固定床反应器中,研究了氢气预处理对兖州煤和大同煤加氢热解脱硫的影响.煤样首先在200~400 ℃,2 MPa,氢气体积流量1 L/min下预处理30 min,再在650℃,2MPa,氢气体积流量1 L/min下进行加氢热解20 min.研究结果表明:同直接加氢热解相比,氢气预处理会降低半焦和水的收率,同时会使焦油收率和脱硫率增加.在直接加氢热解中,大同煤和兖州煤半焦中硫的质量分数分别是2.07%和1.07%;而经适宜的氢气预处理后,其硫的质量分数分别降至1.93%和0.55%,对兖州煤和大同煤而言,其适宜的预处理温度分别为250℃和350℃.  相似文献   

6.
刘全润  胡浩权 《河南化工》2009,26(12):28-30
在压力2MPa,温度350—650℃范围内,对比研究了大同煤分别在氮气和氢气气氛下热解过程中产物的分布和气体生成规律。研究表明,煤的热解和加氢热解转化率和水产率都随温度上升而增加;在热解条件下,焦油产率在500℃出现最大值。氢气对煤热解转化只有超过一定温度才具有促进作用,此时与热解相比具有较高的CO、CH4和C2^+产率以及较低的CO2产率。  相似文献   

7.
喷动-载流床中Co/ZSM-5分子筛催化剂对煤热解的催化作用   总被引:2,自引:0,他引:2  
在喷动-载流床中考察了Co/ZSM-5分子筛催化剂对煤热解气、液、固产物产率及组成变化的影响,分析了催化剂失活的原因及催化剂的再生使用寿命. 结果表明,在550~600℃的热解温度范围内,Co/ZSM-5分子筛催化剂提高煤热解总转化率达70%以上. 而在650℃时,煤热解正己烷可溶物产率最大,其中酚类、脂肪烃类和芳香烃类的产率比无催化剂时分别增加203%, 51%和78%. 因积碳失活的Co/ZSM-5分子筛催化剂经过500℃焙烧后再生使用6次,活性下降不到5%. Co/ZSM-5分子筛催化剂的结构表征结果说明,Co进入了ZSM-5分子筛骨架. Co的催化加氢活性促进了H·与煤热解焦油片断的结合,减少了焦油聚合成大分子的几率,从而提高了煤热解油品的产率和品质.  相似文献   

8.
采用微波加热技术对低变质煤与油页岩的共热解特性进行探讨,研究了不同配比混合物的热解产物产率及成分,并通过气相色谱-质谱(GC-MS)联用技术对液体产物的成分进行了分析.结果表明:微波热解过程中,适当配入低变质煤可提高焦油产率,增加热解气中可燃气体CO,CH4及H2的含量;微波热解共混物所得焦油成分主要是烃类(约50%~80%),其中烷烃和芳香烃居多(约40%~50%左右),其次是少量的以苯酚类为主的含氧化合物,而并未检测出含氮化合物,这一组成有利于焦油的进一步加氢处理.  相似文献   

9.
催化加氢热解反应催化剂前躯物四硫代钼酸铵的表征   总被引:3,自引:0,他引:3  
采用热重、差热分析、FT-IR和X-射线衍射分析手段,对催化加氢催化剂MoS2的前躯物(NH4)2MoS4分段热分解和晶体结构等进行了热分解机理研究,还试验了催化热解性能。四硫代钼酸铵的热分解与热处理温度密切相关,350℃以上开始分解为具有催化活性的硫化钼。利用催化剂前躯物浸渍的煤样品,在氢气氛中550℃进行催化加氢热裂解实验,显示出其催化性能。  相似文献   

10.
利用固定床反应器,考察了浸渍法添加硝酸铁、氯化铁和硫酸亚铁铵等铁基催化剂对煤加氢热解特性的影响,对提高焦油产率较显著的硫酸亚铁铵的作用过程进行了探讨,并对其焦油进行了分析评价.结果表明,添加这三种催化剂时煤加氢热解的转化率都有提高,其中在添加5%(质量分数,以铁计)的硫酸亚铁铵时焦油的产率提高最为显著,由不加催化剂时的14.3%(质量分数,daf)提高到17.9%;铁的价态不同对煤加氢热解的催化作用不同,铵根的存在有利于煤热解转化率和焦油产率的提高;采用硫酸亚铁铵为催化剂时煤热解得到的焦油品质优于无催化剂时得到的焦油品质.  相似文献   

11.
流化床燃烧条件下过渡金属氧化物的催化固硫研究   总被引:1,自引:0,他引:1  
戴财胜  郑万兰 《煤化工》2011,39(1):31-34
利用流化床煤燃烧法和热重分析法研究了MnO_2、Fe_2O_3、ZnO 3种过渡金属氧化物在流化床燃烧条件下的催化固硫效果。实验结果表明,在流化床煤燃烧反应器中,MnO_2、Fe_2O_3、ZnO添加量在Me/S(摩尔比)=2.5时,煤样固硫率最高,分别为40.6%、36.2%、56.9%,添加量为原煤质量的1.0%时,其燃烬率由原煤的44.91%分别提高到57.95%、50.81%、49.36%;在热重分析实验中,MnO_2、Fe_2O_3、ZnO添加量为原煤质量的1.0%时,煤样相对于原煤着火点分别降低5℃、12℃、7℃,最大燃烧速率分别提高32.3%、13.2%、10.0%。结果表明,3种过渡金属氧化物对煤燃烧有良好的催化固硫作用。  相似文献   

12.
借助化学分析方法、X射线衍射、差示扫描量热法等测试手段研究了Fe2O3对无水硫铝酸钙矿物(C4A3S)形成过程的影响.研究表明:掺杂Fe2O3可促进熟料中游离氧化钙(f-CaO)的吸收,增加液相量,改善C4A3-S矿物生料的易烧性;不掺杂Fe2O3的矿物生料,C4A3-S单矿物在850℃以下几乎不生成,在1 000℃开始大量生成,在1 300℃达到最高值;掺杂1?2O3的试样中C4A3S含量与不掺杂试样在同温度下达到最大值,但绝对含量有一定幅度的下降;掺杂3%及5?2O3的试样中C4A3S含量在1 350℃达到最大值,达到最大值的时间比原来延迟0.5h,并且绝对含量有较大幅度的下降;掺杂Fe2O3的试样在1 200℃至1400℃时,Fe3 和C4A3-S中的Al3 发生置换,使Fe3 固熔到C4A3-S中形成固熔体C4(A0.95F0.05)6O12(SO4).  相似文献   

13.
利用高温铜渣的显热作为外热源,进行铜渣催化木屑水蒸气气化的实验研究,通过XRD分析催化反应前后铜渣的物相组成,结合催化气化后产气特性分析,推断铜渣的催化活性组分,测定气化反应前后铜渣的温度,计算铜渣的显热量和余热利用率. 结果表明,催化气化后铜渣出现Fe2O3特征峰,煅烧渣的Fe2O3和Fe3O4特征峰减少且强度减弱. 催化后H2含量明显增加,CH4和C2H4含量明显降低. 由此推断铜渣的催化活性组分为Fe2O3和Fe3O4,其含量越高,铜渣催化效果越好. 气化温度(720~950℃)范围内铜渣温度降低130~240℃,可回收利用的显热量为151.89~237.48 kJ/kg,余热利用率达18.49%~22.63%.  相似文献   

14.
Fe_2O_3/S_2O_8~(2-)超强酸是直接由Fe_2O_3制备而成。本文研究了焙烧温度对催化活性的影响,探索了催化酯化反应的最佳条件。实验结果表明:Fe_2O_3/S_2O_8~(2-)超强酸催化剂是一种性能良好的酯化催化剂,制备简单,能够循环使用,无三废污染,催化效率高,对丁酸异戊酯酯化产率可高达96.02%。  相似文献   

15.
以活性焦(AC)为载体、Fe2O3为活性组分,采用等体积浸渍法制备Fe2O3/AC催化剂,研究了Fe含量对Fe2O3/AC催化剂低温脱硝性能的影响. 结果表明,当Fe负载量为6wt%时能获得比其它负载量更佳的NOx转化率,尤其在240℃时NOx转化率达93.9%,当分别有120?10?6(vol) SO2和3.5vol H2O存在时,脱硝率分别稳定在约86%和74%;催化剂孔径≤4 nm,随Fe负载量增加,孔径呈增大趋势;催化剂较稳定;Fe主要以γ-Fe2O3分散在催化剂表面,负载适量Fe2O3使表面吸附氧Oβ和Fe3+增多,为催化剂提供更多活性位,提高了Fe2O3/AC催化剂的低温选择性催化还原脱硝活性.  相似文献   

16.
在铁氧化物中引入硅的氧化物 ,并用S2 O82 -浸渍铁硅复合氧化物 ,制得固体酸催化剂S2 O82 -/Fe2 O3 SiO2 (Ⅰ )。用马来酸酐与正己醇的酯化反应考察了催化剂的活性。通过XRD和TEM分析 ,对催化剂的结构进行了表征。结果表明 ,Ⅰ的最佳制备条件为 :n(Fe)∶n(Si)为 5∶1、70℃陈化 3h ,2 0 0℃焙烧 2h、用 0 2 5mol/L的 (NH4) 2 S2 O8浸渍 3h、在 5 5 0℃下煅烧 6h ;Ⅰ的催化活性比S2 O2 -8/Fe2 O3 和SO2 -4/Fe2 O3 SiO2 更强 ,S2 O2 -8对Fe2 O3 SiO2 的促进作用明显高于SO2 -4;SiO2 的引入提高了催化剂的分散效果 ;有较好的使用重复性 ;它代替硫酸、对甲苯磺酸用于催化马来酸酐和正己醇的酯化反应可得无色透明的酯化产物  相似文献   

17.
以Na2CO3、MgO、Ca(OH)2为固硫剂,Fe2O3、Al2O3、La2O3为添加剂,对高有机硫煤的燃烧进行固硫研究,探讨固硫剂类型及用量、添加剂类型及用量、煤样粒度、固硫温度等关键因素对固硫效果的影响。结果表明,以Ca(OH)2为固硫剂、La2O3为添加剂,在煤样粒度为0.25mm、Ca(OH)2的用量为固硫煤样质量的10%、La2O3的用量为固硫煤样质量的1.0%、固硫温度为800℃的优化工艺条件下,高有机硫煤燃烧的固硫率为81.67%。  相似文献   

18.
蒲舸  徐鹏  苗厚超 《煤炭转化》2012,35(2):77-80
采用浸渍法制备了不同Cr2O3含量的Cr2O3/γ-Al2O3系列催化剂,研究了Cr2O3/γ-Al2O3催化剂焙烧温度、甲烷浓度及反应空速对甲烷催化活性的影响,并考察了催化剂的抗硫中毒能力.结果表明,该法制备的Cr2O3/γ-Al2O3系列催化剂具有较好的低温催化活性,且随Cr2O3含量的增加,催化剂活性先增加后降低;Cr2O3含量为20%的Cr2O3/γ-Al2O3催化剂的甲烷催化燃烧活性与甲烷浓度呈正相关,与反应空速呈负相关关系.实验表明,400℃焙烧制备的Cr2O3含量为20%的Cr2O3/γ-Al2O3催化剂具有较好的甲烷低温催化活性,且具有较强的抗硫中毒能力.  相似文献   

19.
采用绝热量热仪对环氧乙烷(EO)水溶液?铁锈/Fe2O3体系进行了绝热量热实验,得到了铁锈、Fe2O3固体与EO水溶液接触时的起始放热温度、最高放热温度和压力、绝热温升、失控反应过程温度、压力等参数. 结果表明,在实验条件下EO水溶液与现场铁锈接触时失控反应特征不明显,未出现温度、压力剧升现象;发生失控反应的起始放热温度、最高反应温度、最高压力等随EO浓度降低而减小,达到最大反应速率的时间在30 min内,30wt% EO水溶液?Fe2O3体系的起始放热温度接近100℃,纯EO?Fe2O3体系的起始放热温度为150℃. Fe2O3固体比现场铁锈对EO及其水溶液失控反应的催化诱导作用更明显,且随EO浓度升高,失控后果更严重.  相似文献   

20.
王璐璐  宋涛  张将  段媛媛  沈来宏 《化工学报》2019,70(6):2279-2288
基于化学链气化技术依靠气固反应定向调控气化产物中H2S和SO2摩尔比为2的优势,将化学链气化与Claus工艺中的催化转化单元相结合,提出了高硫石油焦化学链气化制合成气和回收硫磺的新系统。针对系统核心单元,即化学链气化过程,基于Aspen Plus,开展热输入10 MWth的高硫石油焦化学链气化过程模拟,以赤铁矿石为载氧体,水蒸气为气化介质,重点考察了氧碳比、气化温度对化学链气化过程及硫转化过程的影响。结果发现,氧碳比的增大导致合成气产率显著降低,但系统从需要外部提供能量逐渐转变为对外部放热,在氧碳比0.8669~0.9535区间内,系统可以达到热量自平衡。同时,气化温度的提高对合成气产率是有利的,在975℃时达到2.15 m3/kg,主要是由于CO体积分数随气化温度增加而增加。氧碳比和气化温度的提高都会导致H2S浓度的降低和SO2浓度的提高。并且研究了当H2S和SO2摩尔比为2的最佳工况时,氧碳比和气化温度为反相关,其中氧碳比为0.8669,气化温度为900℃时,冷煤气效率为64.09%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号