首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrogen fertigation of trickle-irrigated potato   总被引:5,自引:0,他引:5  
This three-year field study, on Pellic Vertisol, was designed to investigate the response of trickle-irrigated potato (Solanum tuberosum L.) to four nitrogen levels continually applied with the irrigation stream. Waters containing 70, 130, 190, and 250 mg Nl–1 and uniformly supplied with 50 and 120 mgl–1 of P and K, respectively, were applied when the soil water potential was between 0.03 and 0.04 MPa. The amount of water applied at each irrigation was equivalent to 0.8 of pan evaporation from a screened USWB Class A pan. The resulting N application totals ranged from 205 to 735 kg ha–1. Significant buildup of soil NO3-N occurred below 45 cm depth with the two higher amounts of N but not with the 70 or 130 mg Nl–1. A concentration of 130 mg Nl–1 was adequate for maintaining petiole NO3-N above the critical value throughout the growing period. The highest yield of good quality (58130 kg ha–1; specific gravity 1.071) was obtained with 130 mg Nl–1. It was concluded that fertigation (combined irrigation with fertilization) is a promising means for maintaining N concentration in the soil throughout the growing period at desirable levels, without undue losses by leaching.  相似文献   

2.
Phosphorus fertigation of trickle-irrigated potato   总被引:1,自引:0,他引:1  
A 3-year field study, on Pellic Vertisol, investigated the response of trickle-irrigated potato (Solanum tuberosum L.) to four P levels applied with the irrigation water. Waters supplied with 130 and 120 mg l–1 of N and K, respectively, and with P levels of 0, 20, 40 and 60 mg l–1, were applied when the soil water potential was between 0.03 and 0.04 MPa. The water applied at each irrigation was equivalent to 0.8 of pan evaporation from a screened USWB Class A pan. With the application of 40 mg P l–1 no P accumulation deeper in the soil profile occurred, whereas P in petioles was at levels recommended for high yield of good quality. At this P concentration in irrigation water, removal of P from soil by tubers was 22 kg/ha/year. The highest yield of good quality was obtained at 40 mg P l–1.  相似文献   

3.
The comparative effects of ammonium sulphate (AS), potassium nitrate (KNO3), urea (U) or combined 1:1 (w/w) U/KNO3, U/AS granular products were investigated on dry matter (DM) yield and15N utilisation by perennial ryegrass grown under controlled environmental conditions.The DM yield and apparent N recovery with the single N sources was in the order KNO3 > AS > U. The15N budget in shoots, roots and soil indicated that only 55% of the urea N was recovered at the end of the experiment compared with 87% and 86% for AS and KNO3 respectively. The DM yield and apparent N recovery from the combined U/AS source was significantly higher than would be expected (P < 0.01) based on the proportions of each N source in the mixture. Differentially labelling the U and AS with15N indicated that AS enhanced the shoot % utilisation of urea by 38% (P < 0.001) whereas urea reduced the shoot % utilisation of AS by 14% (P < 0.01). These results indicate that an interaction occurred between U and AS when combined in a 1:1 (w/w) ratio in the same pellet.  相似文献   

4.
Field studies were conducted during two consecutive wet seasons in flooded rice (Oryza sativa L.) to determine the effect of green manure on urea utilization in a rice-fallow-rice cropping sequence. Replicated plots were fertilized with 60 to 120 kg of urea N ha–1 in three split applications (50, 25 and 25%) with or without incorporation of dhaincha (Sesbania aculeata L.) (100 kg N ha–1). During the first crop only 31 to 44% of the urea added was used by the rice. Incorporatingin situ grown dhaincha (GM) into the soil at transplanting had little effect on urea utilization. Forty-four to 54% of the N added was not recovered in the soil, rice crop, or as nitrate leachate during the first cropping season. Incorporation of GM had no effect on fertilizer N recovery. Only about 2% of the urea N added to the first rice crop was taken up by the second rice crop and, as in the first crop, the GM had little effect on residual N, either in amount or utilization.  相似文献   

5.
Leaching losses of urea-N applied to permeable soils under lowland rice   总被引:1,自引:0,他引:1  
Application of 120 kg urea-N ha–1 to lowland rice grown in a highly percolating soil in 10 equal split doses at weekly intervals rather than in 3 equal split doses at 7, 21 and 42 days after transplanting did not significantly increase rice grain yield and N uptake. Results suggest that leaching losses of N were not substantial. In lysimeters planted with rice, leaching losses of N as urea, NH 4 + , and NO 3 - beyond 30 cm depth of a sandy loam soil for 60 days were about 6% of the total urea-N and 3% of the total ammonium sulphate-N applied in three equal split doses. Application of urea even in a single dose at transplanting did not result in more N leaching losses (13%) compared to those observed from potassium nitrate (38%) applied in three split doses. Nitrogen contained in potassium nitrate was readily leached during the first week of its application. More N was lost from the first dose of N applied at transplanting than from the second or third dose. Data pertaining to yield, N uptake and per cent N recovery by rice revealed that the performance of different fertilizer treatments was inversely related to susceptibility of N to leaching.  相似文献   

6.
Nitrogen is absorbed by trees in quantities larger than any of the mineral nutrients. It can be taken up by trees as NH4 and as NO3, but the relative ease with which they are absorbed does not necessarily reflect the degree of preference shown by tree species for either of the N forms.In an experiment with larch trees grown on mineral soil in 60-liter containers and supplied with15N-enriched NH4 or NO3, it could be shown that NH4 is absorbed more readily than NO3. With information available on the NH4 : NO3 uptake ratio, a cation-anion uptake balance sheet could be constructed for larch trees, showing a large excess of cations absorbed over anions. The resulting acidifying effect on the soil must be viewed as one of the major causes of acidification of forest soils in the Netherlands. This process, however, is but one in a cyclic sequence of N transformations in forest ecosystems, each one having its specific influence on soilpH. A model of these N transformations is presented and discussed.  相似文献   

7.
Fall application of N fertilizers is often inferior to spring application for increasing yields of spring-sown cereal grains. The objective of this study was to determine the influence of date of application on efficiency of fall-applied N. Fall application dates were related to recovery of fall-applied N as mineral N in soil in spring, and related to yield and N uptake for spring-sown barley. Urea at a rate of 50 or 56 kg N ha–1 was incorporated into the soil to a depth of 10 cm. There were 2 or 3 application dates in the fall and one in the spring at sowing. Linear regression indicated recovery of fall-applied N as soil mineral N in spring increased from 30% with urea added on 19 September to 79% with addition on 6 November, but the predictability was low (r = 0.54**). Increase in grain yield, expressed as relative efficiency of fall- versus spring-applied N, was only 23% on 19 September but rose to 76% by 6 November (r = 0.68**). Results were similar for N uptake in grain. Other approaches to predicting the relative efficiency of fall- versus spring-applied N for yield increase were based on fall soil temperature at 5 cm depth, instead of fall calendar date. Soil temperature on the day of N application gave inferior correlation (r = –0.55**), but the use of number of days from application to first day of 0°C soil temperature gave a fairly close correlation (r = –0.77**). Soil degree-days accumulated from application to first day of 0°C soil temperature gave a similarly close correlation (r = –0.78**). In all, the efficiency of fall-applied urea was markedly increased by delaying the application into the late fall; and calendar date, number of days or soil degree-days from application to soil freezing all predicted the efficiency fairly well.(Contribution No. 599)  相似文献   

8.
A 2-year field experiment was carried out in a sandy soil (Xeropsament-Torripsament) at Nir Yizhaq, Israel, where commercially grown peanut plants were sprayed with different NPKS solutions during the pod-filling period. All foliar sprays were applied in addition to the fertilizer which had been added to the soil before planting. The differences in yield between the treatments were not significant in either year. In the first year, there was a tendency toward increased yields of pods (up to 13%) and of hay (up to 16%) when four foliar fertilizer applications (10 kg N, 1 kg P, 3 kg K and 0.5 kg S/ha/application) were given, at one-week intervals. N was added mainly as urea, P and K as potassium polyphosphate, and S as ammonium sulphate. In the second year, the highest yield was obtained in the control plots and the differences between the treatments were not significant. Utilization of foliar nutrient application seems to be dependent upon availability of these nutrients in the soil.Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel. No. 1976-E. 1087 series.  相似文献   

9.
Ammonium nitrate is thermally stable below 250 °C and could potentially deactivate low temperature NOx reduction catalysts by blocking active sites. It is shown that NO reduces neat NH4NO3 above its 170 °C melting point, while acidic solids catalyze this reaction even at temperatures below 100 °C. NO2, a product of the reduction, can dimerize and then dissociate in molten NH4NO3 to NO+ + NO3, and may be stabilized within the melt as either an adduct or as HNO2 formed from the hydrolysis of NO+ or N2O4. The other product of reduction, NH4NO2, readily decomposes at ≤100 °C to N2 and H2O, the desired end products of DeNOx catalysis. A mechanism for the acid catalyzed reduction of NH4NO3 by NO is proposed, with HNO3 as an intermediate. These findings indicate that the use of acidic catalysts or promoters in DeNOx systems could help mitigate catalyst deactivation at low operating temperatures (<150 °C).  相似文献   

10.
The objective of this study was to increase the efficiency of fall-applied N either by placement in bands or by using a slow-release fertilizer. Four field experiments were conducted in north-central Alberta to determine the influence of N source, time of application and method of placement on the recovery of fall-applied N as soil mineral N in May, and on yield and recovery of N in grain of spring-sown barley. The recovery in soil of mineral N by May from the fall-applied fertilizers varied among treatments. More specifically, the recovery was lowest with topdressed application, highest with banding, and tended to be less with incorporation application as compared to banding. Recovery of mineral N was least for sulphur-coated urea (SCU) compared with A.N. and urea, regardless of method of application. The loss of fall-applied N was substantial, but leaching did not go beyond 60 cm deep.Yield and recovery of N in barley grain were much greater with spring application than with fall application at the 4 sites for ammonium nitrate (A.N.) and at 3 sites for urea. The SCU treatments were inferior. The A.N. and urea had greatest yield and N recovery with banding, followed by incorporation and then with topdressing for both fall- and spring-applied N. Method of application had little effect on yield and N uptake with SCU. In all, the greatest yield or crop N uptake was obtained with spring banding of A.N. or urea, while SCU did not function well as a fall- or spring-applied N fertilizer.(Contribution No. 680)  相似文献   

11.
Nitrogen leaching and plant uptake from controlled-release fertilizers   总被引:5,自引:0,他引:5  
Controlled-release N fertilizers are commonly used in the production of container-grown ornamental crops, yet the relative effects of various nutrient sources on N leaching are not well known. A 27-week experiment was conducted to evaluate N leaching loss and plant growth following two applications of six controlled-release N fertilizers and one soluble N fertilizer to container-grownEuonymus patens Rehd. The controlled-release fertilizers evaluated were (noncoated) isobutylidene diurea, oxamide, urea formaldehyde, and (coated) Osmocote, Prokote Plus, and sulfur-coated urea. Of the fertilizers tested, the coated fertilizers generally out-performed the noncoated fertilizers in reducing N leaching losses, stimulating plant growth, and increasing tissue N concentrations. Low N concentrations in the leachate of some treatments indicated efficient nutrient use by the plant. In other treatments, low N concentrations in the leachate merely reflected incomplete N release from the fertilizer. A daily application of NH4NO3 resulted in a constant rate of N loss but was not the most effective in promoting growth. Plant growth, tissue N concentrations, and N leaching losses were all increased by doubling the fertilizer application rate from 1 kg N m–3 to 2 kg N m–3.  相似文献   

12.
Calcium hydroxide was applied to monolith lysimeters at Onne in south-east Nigeria. Eight lysimeters were cropped with maize followed by upland rice and four were uncropped. The cropped and two uncropped lysimeters received Mg, K and urea in the first season. Two uncropped lysimeters received no fertilizers. Drainage water was collected during the two growing seasons and analyzed for calcium, magnesium, potassium, sodium, nitrate and chloride. The fertilizer applied in the second season was not leached during the year of application.The cropped lysimeters lost 27 percent of the sum of the exchangeable Ca in the soil profile and the calcium added, and 29 percent of the corresponding sum for Mg. With no crop, the losses increased to 34 and 37 percent, respectively, but with no crop or fertilizer, the losses were similar to those from the cropped lysimeters. The loss of potassium ranged from 6 percent from the unfertilized lysimeters to 10 percent in the cropped lysimeters. The amounts of sodium leached ranged from 29 to 35 kg Na ha–1. The bulk of the calcium and magnesium leached from calcium hydroxide and fertilizers occurred in the second season when the loss was in good agreement with the amount of nitrate lost giving (Ca + Mg)/NO3 charge ratios of approximately one. Urea increased the amount of nitrate leached and led to a corresponding increase in the amounts of calcium and magnesium lost in the drainage water. The charge ratio remained unchanged when the cations were leached only with nitrate derived from the mineralization of soil organic matter. In the cropped lysimeters, this source accounted for about four times more nitrate in the drainage water than the fertilizer.  相似文献   

13.
Field experiments were conducted in the 1984 and 1985 wet seasons to determine the effect of N fertilizer application method on15N balances and yield for upland rice (Oryza sativa L.) on an Udic Arguistoll in the Philippines. The test cultivars were IR43 and UPLRi-5 in 1984 and IR43 in 1985. Unrecovered15N in15N balances for 70 kg applied urea-N ha–1, which represented N fertilizer losses as gases and movement below 0.5 m soil depth, ranged from 11–58% of the applied N. It was lowest (11–13%) for urea split applied at 30 days after seeding (DS) and at panicle initiation (PI), and highest (27–58%) for treatments receiving basal urea in the seed furrows. In all treatments with basal-applied urea, most N losses occurred before 50 DS.Heavy rainfall in 1985 before rice emergence resulted in large losses of native soil N and fertilizer N by leaching and possibly by denitrification. During the week of seeding, when rainfall was 492 mm, 91 kg nitrate-N ha–1 disappeared from the 0.3-m soil layer in unfertilized plots. Although rainfall following the basal N application was less in 1984 than in 1985, the losses from basal applied urea-N were comparable in the two years. Daily rainfall of 20–25 mm on 3 of the 6 days following basal N application in 1984 may have created a moist soil environment favorable for ammonia volatilization.In both years, highest grain yield was obtained for urea split-applied at 30 DS and at PI. Delayed rather than basal application of N reduced losses of fertilizer N and minimized uptake of fertilizer N by weeds.  相似文献   

14.
Triticum aestivumThe fate of fertilizer nitrogen applied to dryland wheat was studied in the greenhouse under simulated Mediterranian-type climatic conditions. Wheat, L., was grown in 76-cm-deep pots, each containing 50–70 kg of soil, and subjected to different watering regimes. Two calcareous clay soils were used in the experiments, Uvalde clay (Aridic Calciustoll) and Vernon clay (Typic Ustochrept). Fertilizer nitrogen balance studies were conducted using various15N-labeled nitrogen sources, including ammonium nitrate, urea, and urea amended with urea phosphate, phenyl phosphorodiamidate (a urease inhibitor), and dicyandiamide (a nitrification inhibitor). Wheat yields were most significantly affected by available water. With additional water during the growing period, the recovery of fertilizer nitrogen by wheat increased and the fraction of fertilizer nitrogen remaining in the soil decreased. In the driest regimes, from 40 to 65% of the fertilizer nitrogen remained in the soils. In most experiments the gaseous loss of fertilizer nitrogen, as estimated from unaccounted for15N, was not significantly affected by water regime. The15N not accounted for in the plant and the soil at harvest ranged from 12 to 25% for ammonium nitrate and from 12 to 38% for regular urea. Direct measurement of labeled ammonia loss from soil indicated that ammonia volatilization probably was the main N loss mechanism. Low unaccounted-for15N from nitrate-labeled ammonium nitrate, 4 to 10%, indicated that N losses due to denitrification, gaseous loss from plants, or shedding of anthers and pollen were small or negligible. Amendment of urea with urea phosphate to form a 36% N and 7.3% P product was ineffective in reducing N loss. Dicyandiamide did not reduce N loss from urea presumably because N was not leached from the sealed pots and denitrification was insignificant. Amendment of urea with 2% phenyl phosphorodiamidate reduced N loss significantly. However, band placement of urea at as 2-cm soil depth was more effective in reducing N loss than was amendment of broadcast urea with phenyl phosphorodiamidate.  相似文献   

15.
Nitrogen fixation by trees in relation to soil nitrogen economy   总被引:2,自引:0,他引:2  
The N2-fixing potential (NFP) (i.e. the amount of fixed N2 in a constraint-free environment) of N2-fixing trees (NFTs) varies with the genotype. The NFP can be higher than 30-50 g N2 fixed tree–1 year–1 in the most active species, be they leguminous trees such asAlbizia lebbeck, Gliricidia sepium andLeucaena leucocephala, or actinorhizal trees such asCasuarina equisetifolia. The actual amount of nitrogen fixed (ANF) (i.e. the amount of N2 fixed in the field) is lower than the NFP or even nil because of various constraints, especially drought, nutrient deficiencies, excess of available N and pathogenic nematodes. As tree litters are mineralized, the amount of available N in the soil increases with time, this process leading to the cessation of N2 fixation in aging plantations. When the mineralization rate is slowed down or inhibited, N2 fixation can continue. NFTs improve the N status of soils, but the transfer of fixed N to associated plants is not always ensured. Three main approaches are appropriate to increase N2 fixation: clonal selection of trees combined with vegetative propagation, inoculation with effective rhizobium orFrankia strains, and proper fertilization (especially P). In the absence of major environmental constraints, a positive response to inoculation is expected only when specific (non-promiscuous) NFTs are grown in sites where the density of compatible rhizobia is low or nil. The potentialities of NFTs are far from being fully exploited. Further investigations are proposed and the economics of NFT management is briefly discussed.  相似文献   

16.
Field experiments were conducted during 1988–1989 at two adjacent sites on an acid sulfate soil (Sulfic Tropaquept) in Thailand to determine the influence of urea fertilization practices on lowland rice yield and N use efficiency. Almost all the unhydrolyzed urea completely disappeared from the floodwater within 8 to 10 d following urea application. A maximum partial pressure of ammonia (pNH3) value of 0.14 Pa and an elevation in floodwater pH to about 7.5 following urea application suggest that appreciable loss of NH3 could occur from this soil if wind speeds were favorable. Grain yields and N uptake were significantly increased with applied N over the control and affected by urea fertilization practices (4.7–5.7 Mg ha–1 in dry season and 3.0–4.1 Mg ha–1 in wet season). In terms of both grain yield and N uptake, incorporation treatments of urea as well as urea broadcasting onto drained soil followed by flooding 2 d later were more effective than the treatments in which the same fertilizer was broadcast directly into the floodwater either shortly or 10 d after transplanting (DT). The15N balance studies conducted in the wet season showed that N losses could be reduced to 31% of applied N by broadcasting of urea onto drained soil and flooding 2 d later compared with 52% loss by broadcasting of urea into floodwater at 10 DT. Gaseous N loss via NH3 volatilization was probably responsible for the poor efficiency of broadcast urea in this study.  相似文献   

17.
Management of nitrogen by fertigation of potato in Lebanon   总被引:2,自引:0,他引:2  
Reports on soil and groundwater contamination with nitrates in Lebanon and other developing countries could be related to the mismanagement of water and fertilizer inputs. The objective of this work was to determine the N requirements and N-use efficiency of a main-crop potato in Lebanon, irrigated by a drip system, compared to the farmer's practice of macro-sprinkler. In the drip irrigation, fertilizers input was as soil application at the time of sowing or added continuously with the irrigation water (fertigation). Nitrogen-fertilizer recovery was determined using 15N-labeled ammonium sulfate. Fertigation with continuous N feeding based on actual N demands and available sources allowed for 55% N recovery. For a total N uptake of 197 kg ha–1 per season in the lower N rate, the crop removed 66 kg N ha–1 from fertilizers. The spring potato crop in this treatment covered 44.8% of its N need from the soil and 21.8% from irrigation water. Higher N input increased not only N derived from fertilizers, but also residual soil N. Buildup of N in the soil with the traditional potato fertilization practice reached 200 kg N ha–1 per season. With increasing indications of deteriorating groundwater quality, we monitored the nitrate leaching in these two watering regimes using soil solution extractors (tensionics). Nitrate leaching increased significantly with the macro-sprinkler technique. But N remained within the root zone with the drip irrigation. The crop response to applied N requires a revision of the current fertilizer recommendation in semi-arid regions, with an improved management of fertilizer and water inputs using fertigation to enhance N recovery.  相似文献   

18.
Confined microplots were used to study the fate of15N-labelled ammonium nitrate and urea when applied to ryegrass in spring at 3 lowland sites (S1, S2 and S3). Urea and differentially and doubly labelled ammonium nitrate were applied at 50 and 100 kg N ha–1. The % utilization of the15N-labelled fertilizer was measured in 3 cuts of herbage and in soil to a depth of 15 cm (soil0–15).Over all rates, forms and sites, the % utilization values for cuts 1, 2, 3 and soil0–15 were 52.4, 5.3, 2.4 and 16.0% respectively. The % utilization of15N in herbage varied little as the rate of application increased but the % utilization in the soil0–15 decreased as the rate of application increased. The total % utilization values in herbage plus soil0–15 indicated that losses of N increased from 12 to 25 kg N ha–1 as the rate of N application was increased from 50 to 100 kg N ha–1.The total % utilization values in herbage plus soil0–15 over both rates of fertilizer N application were 84.1, 80.8 and 81.0% for urea compared with 74.9, 72.5 and 74.4% for all ammonium nitrate forms at S1, S2 and S3 respectively. Within ammonium nitrate forms, the total % utilization values in herbage plus soil0–15 over both rates and all sites were 76.7, 69.4 and 75.7% for15NH4NO3, NH4 15NO3 and15NH4 15NO3 respectively. The utilization of the nitrate moiety of ammonium nitrate was lower than the utilization of the ammonium moiety.The distribution of labelled fertilizer between herbage and soil0–15 varied with soil type. As the total utilization of labelled fertilizer was similar at all sites the cumulative losses due to denitrification and downward movement appeared to account for approximately equal amounts of N at each site.  相似文献   

19.
Grain legumes are used widely in intercropping systems. However, quantitative and comparative data available as to their N2 fixation and N beneficial effect on the companion crop in intercropping systems are scarce. Hence, studies were conducted to ascertain the above when cowpea (Vigna unguiculata L.), mungbean (Vigna radiata L.) and groundnut (Arachis hypogaea L.) were intercropped with maize. The study was15N-aided and made outdoors in basins (30 L) filled with 38 kg of soil.15N labelling was effected by incorporating15N-tagged plant material or applying15N-labelled fertilizer along with sucrose to stabilize15N enrichment in the soil during the experimental period. Intercropped groundnut fixed the highest amount of nitrogen from the atmosphere (i.e. 552 mg plant–1), deriving 85% of its N from the atmosphere. Intercropped cowpea and mungbean fixed 161 and 197 mg N plant–1, obtaining 81% and 78% of their N content from the atmosphere, respectively. The proportion of N derived by maize from the associated legume varied from 7-11% for mungbean, 11–20% for cowpea and 12–26% for groundnut which amounted to about 19–22, 29–45 and 33–60 mg N maize plant–1, respectively. The high nitrogen fixation potential of groundnut in dual stands and its relatively low harvest index for N have apparently contributed to greater N-benefical effect on the associated crop.  相似文献   

20.
The effect of urea on micelle formation of zwitterionic surfactants was investigated by measuring conductivity, critical micelle concentration (CMC), relative viscosity, and the spectrophotometric shift in wavelength. We examined two zwitterionic surfactants, N,N-dimethyl dodecylamine N-oxide and N,N-dimethyl tetradecylamine N-oxide (DMTAO). The CMC values of the surfactants increased with the addition of urea. Also, the relative viscosity of the surfactant solutions decreased at higher concentrations of urea and increased with increasing KCl concentration. The absorbance maxima of the surfactants decreased with increasing urea concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号