首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 21st Century Frontier R&D Program was planned to develop and commercialize the inductive Superconducting Fault Current Limiter (SFCL) in Korea until 2011. The 1.2 kV/80 A inductive SFCL was planned to develop at the first year in the first phase (2001-2002) and the 6.6 kV/200 A inductive SFCL for short run operation test was planned to develop at the second and third year in the first phase (2002-2004). The experimental characteristics of conduction-cooled cooling system developed in the first year was very weak from the sudden large thermal disturbance. Therefore, the conduction-cooled cooling system was concluded not appropriate for the cryogenic technology of the application of superconducting fault current limiter. In the third year research, the improved sub-cooled nitrogen cooling system was adopted and investigated.In this paper, the characteristics of each cooling type was compared and the basic deign of ameliorated cooling system was introduced and the total heat load of the cooling system was calculated and compared with the heat load of the cooling system developed at 2nd year research.  相似文献   

2.
Superconducting fault current limiter (SFCL) has become one of the most ideal current limiting devices to solve the problem of increasing short-circuit current in high-voltage power grid. This paper presents a resistive-type SFCL model developed using simulation software PSCAD/EMTDC. After being verified by finite-element model and experimental results, the model is used to study the impact of SFCLs on the power grid and the co-ordination between SFCL and relay protections in 10 kV distribution network. A series of simulations are carried out to find appropriate parameters of SFCL model to cooperate with relay protection devices. The final result in this paper could provide important quantitative basis of parameters for SFCL to be applied in a real power system.  相似文献   

3.
This paper introduces a new vibration free cryostat cooled by liquid helium and a 4 K pulse tube cryocooler. The cryogenic device mounts on the sample cooling station which is cooled by liquid helium. The boil off helium is recondensed by the pulse tube cryocooler, thus the cryostat maintains zero boil off. There is no mechanical contact between the cryogenic part of the cryocooler and the sample cooling station. A bellows is used to isolate the vibration which could transfer from the cryocooler flange to the cryostat flange at the room temperature. Any vibrations generated by the operation of the cryocooler are almost entirely isolated from the cryogenic device. The cryostat provides a cooling capacity of 0.65 W at 4.21 K on the sample cooling station while maintaining a vapor pressure of 102 kPa. The sample cooling station has a very stable temperature with oscillations of less than ±3 mK during all the operations. A cryogenic microwave oscillator has been successfully cooled and operated with the cryostat.  相似文献   

4.
A cool-down time is one of the major factors in many cryocooler applications, especially for the design of conduction-cooled superconducting devices. Cool-down time means a time cooling a thermal mass from a room-temperature to cryogenic-temperature within a stipulated amount of time. The estimation of cool-down time seeks the elapsed time to cool the thermal object by a cryocooler during initial cool-down process. This procedure includes the dimension and properties of thermal object, heat transfer analysis for cryogenic load, thermal interface between cold mass and cryocooler, and available refrigeration capacity of cryocooler. The proposed method is applied to the specific cooling system for 3 T superconducting magnet cooled by a two-stage GM cryocooler. The result is compared with that of experiment, showing that proposed method has a good agreement with experiment. In addition, the initial cool-down time can be shortened by employing thermal link between the cold mass and first-stage of cryocooler. Through a rigorous modeling and analysis taking into account the effect of thermal link size, it is concluded that there exists an optimal cool-down time during initial cooling in conduction-cooled superconducting magnet system.  相似文献   

5.
《低温学》2006,46(2-3):149-157
Since the next cryogenic infrared mission “JAXA/SPICA” employs advanced mechanical cryocoolers with effective radiant cooling in place of cryogen, the primary mirror, 3.5 m in diameter, and the optical bench can be maintained at 4.5 K for at least 5 years. First, the feasibility of the thermal design of the cryogenic system is presented. A 20 K-class Stirling cryocooler was then improved in cooling capacity and reliability for the mission, and the effects of contaminated working gas or new regenerator materials on cooling performance were investigated. Development of a new 3He-JT (Joule–Thomson) cryocooler for use at 1.7 K is also described, along with the successful results of a cooling capacity higher than the required 10 mW. A 4 K-class cryocooler was modified and developed for higher reliability over a five-year operational life and a higher cooling capacity exceeding the current 30 mW. Finally, we discuss a system for heat rejection from cryocoolers using thermal control devices.  相似文献   

6.
When an HTS coated conductor (CC) is used as a conductor of a superconducting fault current limiter (SFCL), the CC is expected to be exposed to the over-current and temperature of the CC is expected to be increased rapidly by electrical joule heating. Because the CC is a composite tape, thermal and electrical properties of composite materials could affects over-current limiting capacity and recovery time of SFCL. This paper presents experimental and numerical results of over-current test and recovery time measurement test on four bifilar wound SFCL modules. The temperature transitions of the samples were estimated from total electrical resistance of the coils. We fabricated one bifilar solenoid coil and three bifilar pancake coils whose cryogenic conditions were different from the other coils. An numerical model was also fabricated to simulate the temperature transition and the numerical results were compared with experimental results.  相似文献   

7.
A versatile cryogenic test bed, based on circulating cryogenic helium gas, has been designed, fabricated, and installed at the Florida State University Center for Advanced Power Systems (FSU-CAPS). The test bed is being used to understand the benefits of integrating the cryogenic systems of multiple superconducting power devices. The helium circulation system operates with four sets of cryocooler and heat exchanger combinations. The maximum operating pressure of the system is 2.1 MPa. The efficacy of helium circulation systems in cooling superconducting power devices is evaluated using a 30-m-long simulated superconducting cable in a flexible cryostat. Experiments were conducted at various mass flow rates and a variety of heat load profiles. A 1-D thermal model was developed to understand the effect of the gas flow parameters on the thermal gradients along the cable. Experimental results are in close agreement with the results from the thermal model.  相似文献   

8.
A homogeneous magnetic field superconducting magnet with a cold bore of 250 mm and a central field of 4.3 T has been designed, manufactured, and tested with zero liquid helium boil-off. As a result of magnetic field homogeneity considerations, the magnet is composed of three coaxial coils: one main coil and two compensation coils. All coils are connected in series and can be charged with a single power supply. The magnetic field homogeneity is about ±3.0 % from ?200 mm to 200 mm in axial direction with 86 mm in diameter. The magnet can be operated in persistent mode with a superconducting switch. A two-stage GM cryocooler with a capacity of 1.5 W at 4.2 K was used to cool the superconducting magnet. The cryocooler prevents the liquid helium from boiling off and leads to zero helium loss during static operation. The magnet can be operated in liquid helium circumstance by cooling the gas helium with the cryocooler without additional supply of liquid helium. Under this condition, the magnet is successfully operated up to 4 T without quench. The magnet system can be generating 0.25 L/h liquid helium with the cryocooler by supplying the gas helium without loading the magnet. In this paper, the magnet design, manufacture, mechanical behavior analysis, and the performance test results of the magnet are presented.  相似文献   

9.
This paper presents a comparative study of resistive and inductive superconducting fault current limiter (SFCL) for power systems transient stability improvement. Two applications of transient stability assessment are presented in this paper: The first shows the efficiency of the resistive and inductive SFCL in series with a generator, the second uses SFCL installed in series with a transmission line. SFCL can just be operated during the period from the fault occurrence to the fault clearing; the modeling and the effect of SFCL has been investigated to have higher benefits for the power system. In the present work, modification of the admittance matrix method is used for modeling of SFCL; Critical Clearing Time (CCT) has been used as an index for evaluated transient stability. The transient stability is assessed by the criterion of relative rotor angles, using the Runge–Kutta method. The effectiveness of the proposed method is tested on the WSCC3 nine-bus system applied to the case of three-phase short circuit fault in one transmission line. A simulation and comparison are presented in this document.  相似文献   

10.
A single stage reverse Brayton cryocooler using miniature high-speed turbomachines recently completed a successful space shuttle test flight demonstrating its capabilities for use in cooling the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) on the Hubble Space Telescope (HST). The NICMOS CryoCooler (NCC) is designed for a cooling load of about 8 W at 65 K, and comprises a closed loop cryocooler coupled to an independent cryogenic circulating loop. Future space applications involve instruments that will require 5–200 mW of cooling at temperatures between 4 and 10 K. This paper discusses the extension of Turbo Brayton technology to meet these requirements.  相似文献   

11.
The objective of this work is to study the effect of the reservoir pressure and volume on the cool-down behaviour of a miniature Joule–Thomson (J–T) cryocooler considering the distributed J–T effect. As the supply pressure to the J–T cooler reduces in case of a reservoir with finite capacity, the volume and the initial pressure of the reservoir are crucial for the operation of the cryocooler. These parameters affect the cool down time, cooling effect and the time for which the cooling effect is obtained at the required cryogenic temperature. A one dimensional transient model is formulated for the fluid streams and the solid elements of the recuperative heat exchanger of the cryocooler. Argon gas is used as the working fluid and its physical properties are evaluated at the local conditions of temperature and pressure. Cases with different reservoir capacities and pressures are worked out to study their effect on the transient behaviour of the cryocooler.  相似文献   

12.
低温技术在高温超导(HTS)电力系统中的应用   总被引:1,自引:0,他引:1  
阐述低温技术在超导电力系统中的制冷机支接冷却技术、液氮迫流循环系统以及基于Peltier材料的Peltier冷却方法等几个重要应用。指出用微低温工程学(micro-nanocryogenics)观点研究三维低温界面层和界面层热阻对高温超导动态稳定性的影响是高温超导电力应用低温技术的研究热点及重要研究方向之一。  相似文献   

13.
The present paper depicts an application of response surface methodology (RSM) and particle swarm optimization (PSO) technique for optimizing the machining factors in turning of titanium (Grade-II) alloy using cubic boron nitride insert tool under minimum quantity lubricant (MQL) environment. The three machining factors, i.e., cutting speed (Vc), feed rate (f) and side cutting edge angle (approach angle π), are designed as three factors by using RSM design, which is withal subject to several constraints including tangential force (Fc), tool wear (VBmax), surface roughness (Ra) and tool-chip contact length (L). The multiple regression technique was used to establish the interaction between input parameters and given responses. Moreover, the results have been presented and optimized process parameters are acquired through multi-response optimization via desirability function as well as the PSO technique. The lower values of Vc (200 m/min), f (0.10 mm/rev) and higher values of ? (90°) are the optimum machining factors for minimizing the aforementioned responses. It was also observed that the selected responses predicated on PSO are much closer as that of the values acquired in view of the desirability function approach. Henceforth, PSO has the potential to cull appropriate machining factors while turning titanium (Grade-II) alloys under MQL conditions.  相似文献   

14.
In order to eradicate the use of mineral based cutting fluid, the machining of Ni–Cr–Co based Nimonic 90 alloy was conducted using environment friendly sustainable techniques. In this work, uncoated tungsten carbide inserts were employed for the machining under dry (untreated and cryogenically treated), MQL, and cryogenic cutting modes. The influence of all these techniques was examined by considering tool wear, surface finish, chip contact length, chip thickness, and chip morphology. It was found that the cryogenically treated tools outperformed the untreated tools at 40 m/min. At cutting speed of 80 m/min, MQL and direct cooling with liquid nitrogen brought down the flank wear by 50% in comparison to dry machining. Similarly at higher cutting speed, MQL and cryogenic cooling techniques provided the significant improvement in terms of nose wear, crater wear area, and chip thickness value. However, both dry and MQL modes outperformed the cryogenic cooling machining in terms of surface roughness value at all the cutting speeds. Overall cryotreated tools was able to provide satisfactory results at lower speed (40 m/min). Whereas both MQL and cryogenic cooling methods provided the significantly improved results at higher cutting speeds (60 and 80 m/min) over dry machining.  相似文献   

15.
A rectifier type superconducting fault current limiter (SFCL) with non-inductive reactor has been proposed. The concept behind this SFCL is the appearance of high impedance during non-superconducting state of the coil. In a hybrid bridge circuit, two superconducting coils connected in anti-parallel: a trigger coil and a limiting coil. Both the coils are magnetically coupled with each other and have same number of turns. There is almost zero flux inside the core and therefore the total inductance is small during normal operation. At fault time when the trigger coil current reaches to a certain level, the trigger coil changes from superconducting state to normal state. This super-to-normal transition of the trigger coil changes the current ratio of the coils and therefore the flux inside the reactor is no longer zero. So, the equivalent impedance of both the coils increased thus limits the fault current. We have carried out computer simulation using EMTDC and observed the results. A preliminary experiment has already been performed using copper wired reactor with simulated super-to-normal transition resistance and magnetic switches. Both the simulation and preliminary experiment shows good results. The advantage of using hybrid bridge circuit is that the SFCL can also be used as circuit breaker. Two separate bridge circuit can be used for both trigger coil and the limiter coil. In such a case, the trigger coil can be shutdown immediately after the fault to reduce heat and thus reduce the recovery time. Again, at the end of fault when the SFCL needs to re-enter to the grid, turning off the trigger circuit in the two-bridge configuration the inrush current can be reduced. This is because the current only flows through the limiting coil. Another advantage of this type of SFCL is that no voltage sag will appear during load increasing time as long as the load current stays below the trigger current level.  相似文献   

16.
Mixed refrigerant Joule–Thomson (MR J–T) cryocoolers have been used to create cryogenic temperatures and are simple, efficient, cheap, and durable. However, compressors for MR J–T cryocoolers still require optimization. As the MR J–T cryocooler uses a commercial scroll compressor developed for air-conditioning systems, compressor overheating due to the use of less optimized refrigerants may not be negligible, and could cause compressor malfunction due to burn-out of scroll tip seals. Therefore, in the present study, the authors propose procedures to optimize compressor operation to avoid the overheating issue when the MR J–T cryocooler is used with a commercial oil lubricated scroll compressor, and the present experimental results obtained for a MR J–T cryocooler. A single stage 1.49 kW (2 HP) scroll compressor designed for R22 utilizing a mixture of nitrogen and hydrocarbons was used in the present study. As was expected, compressor overheating and irreversible high temperatures at a compressor discharge port were found at the beginning of compressor operation, which is critical, and hence, the authors used a water injection cooling system for the compressor to alleviate temperature overshooting. In addition, a portion of refrigerant in the high-pressure stream was by-passed into the compressor suction port. This allowed an adequate compression ratio, prevented excessive temperature increases at the compressor discharge, and eventually enabled the MR J–T cryocooler to operate stably at 121 K. The study shows that commercial oil lubricated scroll compressors can be used for MR J–T cryocooling systems if care is exercised to avoid compressor overheating.  相似文献   

17.
This paper presents a Computational Fluid Dynamics (CFD) analysis of a novel free-piston Stirling cryocooler that uses a pair of metal diaphragms to seal and suspend the displacer. The diaphragms allow the displacer to move without rubbing or moving seals. When coupled to a metal diaphragm pressure wave generator, the system produces a complete Stirling cryocooler with no rubbing parts in the working gas space. Initial modelling of this concept using the Sage modelling tool indicated the potential for a useful cryocooler. A proof-of-concept prototype was constructed and achieved cryogenic temperatures. A second prototype was designed and constructed using the experience gained from the first. The prototype produced 29 W of cooling at 77 K and reached a no-load temperature of 56 K. The diaphragm’s large diameter and short stroke produces a significant radial component to the oscillating flow fields inside the cryocooler which were not modelled in the one-dimensional analysis tool Sage that was used to design the prototypes. Compared with standard pistons, the diaphragm geometry increases the gas-to-wall heat transfer due to the higher velocities and smaller hydraulic diameters. A Computational Fluid Dynamics (CFD) model of the cryocooler was constructed to understand the underlying fluid-dynamics and heat transfer mechanisms with the aim of further improving performance. The CFD modelling of the heat transfer in the radial flow fields created by the diaphragms shows the possibility of utilizing the flat geometry for heat transfer, reducing the need for, and the size of, expensive heat exchangers. This paper presents details of a CFD analysis used to model the flow and gas-to-wall heat transfer inside the second prototype cryocooler, including experimental validation of the CFD to produce a robust analysis.  相似文献   

18.
Chinh T. Nguyen 《低温学》2010,50(9):529-533
Cooling distribution is a vital technology concerning cryogenic thermal management systems for many future space applications, such as in-space, zero boil-off, long-term propellant storage, cooling infrared sensors at multiple locations or at a distance from the cryocooler, and focal-plane arrays in telescopes. These applications require a cooling distribution technology that is able to efficiently and reliably deliver cooling power (generated by a cryocooler) to remote locations and uniformly distribute it over a large-surface area. On-going efforts by others under this technology development area have not shown any promising results.This paper introduces the concept of using a Resonant Self-Pumped Loop (RSPL) integrated with the proven, highly efficient pulse tube cryocooler. The RSPL and pulse tube cryocooler combination generates cooling power and provides a distributive cooling loop that can be extended long distances, has no moving parts, and is driven by a single linear compressor. The RSPL is fully coupled with the oscillating flow of the pulse tube working fluid and utilizes gas diodes to convert the oscillating flow to one-directional (DC) steady flow that circulates through the cooling loop. The proposed RSPL is extremely simple, lightweight, reliable, and flexible for packaging. There are several requirements for the RSPL to operate efficiently. These requirements will be presented in this paper. Compared to other distributive cooling technologies currently under development, the RSPL technology is unique.  相似文献   

19.
Superconducting fault current limiter, SFCL, forms an important category of fault-current-limiting devices which limit the short-circuit current levels in electrical networks. Therefore, modeling its operation and anticipating its characteristic parameters are too important in its design and optimization process. In this paper a novel integrative method has been proposed which predicts, with a good accuracy, the behavior of inductive shield-type SFCL in different circumstances and approximates its main operational characteristics, as the through current, the inductance and the voltage-current characteristics. An algorithm is presented to calculate the exact distribution of magnetic flux and supercurrent density inside the superconductor bulk in different operational conditions using the well-known Bean model and for the first time the flux pinning effect has been taken into account in SFCL operation modeling. For estimation of flux density distribution outside the superconductor bulk, the FEM analysis has been utilized. An iterative method has been used, based on the numerical solution of differential equations, to calculate the instant value of the SFCL through-current and inductance. The proposed method of modeling has been studied on a specific design of shield-type SFCL and its through current in normal and fault conditions of a test circuit, variation of its inductance with time and its voltage-current characteristic are calculated theoretically. A prototype has been fabricated based on the studied SFCL design and has been tested experimentally. The comparison of the experimental and theoretical results shows that this modeling predicts the SFCL operation with a good accuracy.  相似文献   

20.
研究了用自联想网络(AANN)进行数字滤波的方法。自联想网络采用一种带有瓶颈层的特殊结构,且具有单位总增益。在经过大量带噪声样本的训练之后,各变量之间能够建立起内在联系。输入信息通过瓶颈层前的压缩及瓶颈层后的解压缩过程,信息中的精华将被提取,从而使人们能够利用冗余信息抑制其测量噪声,使发动机测量参数在最大程度上减少噪声对其带来的负面影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号