首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ten layers of InGaMnAs/GaAs multiquantum wells (MQWs) structure were grown on high resistivity (100) p-type GaAs substrates by molecular beam epitaxy (MBE). A presence of the ferromagnetic structure was confirmed in the InGaMnAs/GaAs MQWs structure, and have ferromagnetic ordering with a Curie temperature, T C=50 K. It is likely that the ferromagnetic exchange coupling of the sample with T C=50 K is hole-mediated resulting in Mn substituting In or Ga sites. PL emission spectra of the InGaMnAs MQWs sample grown at a temperature of 170 °C show that an activation energy of the Mn ion on the first quantum confinement level in InGaAs QW is 32 meV and impurity Mn is partly ionized. The fact that the activation energy of 32 meV of Mn ion in the QW is lower than an activation energy of 110 meV for a substitutional Mn impurity in GaAs, indicating an impurity band existing in the bandgap due to substitutional Mn ions.  相似文献   

2.
This paper presents experimental results of the specific heat and magnetocaloric effect in Pr1?x Ag x MnO3 (x = 0.05–0.25) manganites. A maximum value of magnetic entropy change for the sample with x = 0.15 was observed in magnetic field of 18 kOe at T C = 125 K and was ΔS max ≈ 2.96 J/kg K. In Pr0.95Ag0.05MnO3 sample, a sign inversion of the magnetocaloric effect was observed at low temperatures (~80 K) in low magnetic fields of 750 Oe. The coexistence of ferromagnetic and canted antiferromagnetic phases with closely spaced critical temperatures was found to force the magnetocaloric effect into abrupt sign inversion.  相似文献   

3.
We report the magnetocaloric effect (MCE) in a Pr0.52Sr0.48MnO3 single crystal estimated from the isothermal magnetization curve using the Maxwell relation. Isothermal magnetization curves are measured over the range 20 K to 320 K where the field was applied parallel (??) and perpendicular (??) to the [110] direction of the perovskite structure with Pbnm space group. A peak in the temperature (T) dependence of magnetic entropy change (??S M) with a fairly large negative value (???3.3 J/kg?K) is observed at 275 K close to the Curie temperature (T C) for a change in field of ??H=40 kOe. The ?? and ?? components of ??S M deviate from each other below ??260 K and an inverse MCE is observed below ??150 K. We note that the Landau theory of phase transitions satisfactorily explains the ??S M vs T plot around the second-order transition at T C.  相似文献   

4.
We report the low temperature magnetization, electrical resistance, and magnetoresistance of La1.24Sr1.76Mn2O7 bilayer manganite system under hydrostatic pressure. At ambient pressure, the compound shows a sharp ferromagnetic transition (T C) accompanied by a metal–insulator transition (T MI) at 130 K. We observe that the T C and T MI increase with hydrostatic pressure at a rate of dT C/dP = 2.08 K/kbar and dT MI/dP = 2 K/kbar, respectively. Also, we observe an appreciable increase of magnetic moments at low temperatures with increasing pressure. The high temperature regime of temperature dependence of resistivity curves was fitted with the Emin–Holstein’s polaron hopping model and the calculated activation energy values suggest that the applied pressure weakens the formation of Jahn–Teller polarons. The magnetoresistance ratio (MRR) was measured at T C and at 4.2 K upon an external magnetic field of 5 T. The observed MRR at T C is about 210 % and the applied pressure increases the MRR significantly. These results can be interpreted by the pressure-enhanced overlap between the orbitals of Mn–O–Mn, which facilitates the charge transfer and hence enhances the ferromagnetism and metallicity.  相似文献   

5.
This report describes the direct melt processing of inorganic tin fluorophosphate (TFP) glass fibers with average diameters ranging from 2 to 4 µm via centrifugal Forcespinning. This was accomplished by using a TFP glass with low glass transition temperature (T g) and the melt processing capability of Forcespinning. The thermal behavior of TFP glass fibers was investigated by differential scanning calorimetry and thermogravimetric analysis, while the compositional evolution of the fibers was studied using energy-dispersive spectrometry and Fourier-transform infrared spectroscopy. These fibers exhibited excellent thermal stability after thermal post-treatment at 300 °C. The T g of the thermally treated fibers increased by 100 °C compared to the bulk material. The fibers were found to undergo dehydration and loss of fluorine during thermal treatment, resulting in a rigid and crosslinked glass network with enhanced thermal stability and increased T g. The enhanced thermal stability demonstrated the potential of TFP fibers for high temperature catalysis and chemical filtration applications.  相似文献   

6.
Eleven glass compositions were prepared by melt and quench method with progressive substitution of SrO for PbO (0?≤?x?≤ 1·0) with a step-wise increment of 0·10 in the glass [(Pb x Sr1???x )OTiO2]–[(2SiO2B2O3)]–[BaO·K2O]·Nb2O5 (mol percentage) system. The infrared spectra (IR) of various glass compositions in the above mentioned glass system was recorded over a continuous spectral range 400–4000 cm???1 to study their different oxides structure systematically. Differential thermal analysis (DTA) was recorded from room temperature (~27 °C) to 1400 °C employing a heating rate of 10 °C /min to determine glass transition temperature, T g and crystallization temperature, T c. The melting temperature, T m, of these glass compositions was found to be in the range 597–1060 °C depending on the composition under normal atmospheric conditions. T g and T m of glasses were found to increase with increasing SrO content. X-ray diffraction analysis of these glass–ceramic samples shows that major crystalline phase of the glass–ceramic sample with x ≤ 0·5 was found to have cubic structure similar to SrTiO3 ceramic. Scanning electron microscopy has been carried out to see the surface morphology of the crystallites dispersed in the glassy matrix.  相似文献   

7.
Photoreflectance spectra have been measured on the ternary chalcopyrite semiconductor AgInSe2 at T = 15–300 K. The direct-bandgap energies, E 0A, E 0B, and E 0C, of AgInSe2 show unusual temperature dependence at low temperatures. The resultant temperature coefficients \({\partial E_{0\alpha}/\partial T}\) \(({\alpha=\hbox{A, B, C}})\) are positive at T below ~100 K and negative above ~100 K. These results are successfully explained by taking into account the negative lattice thermal expansion at low temperatures. The spin–orbit and crystal-field parameters Δso and Δcf are also found to show small temperature variations.  相似文献   

8.
The correlated metal UCoGe is a weak itinerant ferromagnet with a Curie temperature T C=3 K and a superconductor with a transition temperature T s=0.6 K. We review its basic thermal, magnetic—on the macro and microscopic scale—and transport properties, as well as the response to high pressure. The data unambiguously show that superconductivity and ferromagnetism coexist below T s=0.6 K and are carried by the same 5f electrons. We present evidence that UCoGe is a p-wave superconductor and argue that superconductivity is mediated by critical ferromagnetic spin fluctuations.  相似文献   

9.
The effect of magnetic Co2+ and nonmagnetic Ga3+ impurities on the crystal structure and superconducting properties of LiFeAs single crystals has been investigated. A large T c decrease of about 4.8 K/at% is observed in Ga-doped LiFeAs. This rate is higher than that of the material doped with magnetic Co impurities (~3.7 K/at%). The greater T c suppression in the Ga case is likely due to the pair breaking associated with the significant changes in the crystal structure of the doped material. The increase of the critical current densities in intermediate magnetic fields (H⊥?ab) indicates that a very small amount of Ga (0.5 at%) acts as an effective pinning site for flux pinning enhancement in the material. The analysis of the temperature and field dependencies of the magnetic relaxation is consistent with the collective pinning model for the Co-doped material, while the magnetic relaxation measurements combined with the peak position of the critical current density in the BT phase diagram of Ga-doped LiFeAs suggest an elastic–plastic transition of the vortex lattice at higher temperatures and fields.  相似文献   

10.
We report magnetization and ac susceptibility as functions of the temperature and frequency for CuCr2O4 spinel oxide from 2 K to 300 K. Bulk CuCr2O4 crystallizes at room temperature in a tetragonal distorted spinel and above 865 K its structure is cubic spinel; distortion is caused by Jahn–Teller Cu2+ ions. The magnetization data of the polycrystalline sample indicates ferrimagnetic order below T C =122 K. Magnetization isotherm resulted in an average magnetic moment of 0.08 μB/f.u. at 2 K values lowest to expected value. This discrepancy can be explained assuming a triangular configuration of spins Cr3+ and Cu2+. The ferromagnetic phase of the sample does not show glassy behavior. Its magnetic response can be explained simply from the domain wall dynamics of otherwise homogeneous ferrimagnet.  相似文献   

11.
Colossal magnetoresistance La5/8Sr3/8MnO3 (LSMO) thin films were directly grown on MgO(100), Si(100) wafer and glass substrates by pulsed laser deposition technique. The films were characterized using X-ray diffraction (XRD), field emission-scanning electron microscope and atomic force microscopy (AFM). The electrical and magnetic properties of the films are studied. From the XRD patterns, the films are found to be polycrystalline single-phases. The surface appears porous and cauliflower-like morphology for all LSMO films. From AFM images, the LSMO films deposited on glass substrate were presented smooth morphologies of the top surfaces as comparing with the films were deposited on Si(100) and MgO(100). The highest magnetoresistance (MR) value obtained was ?17.21 % for LSMO/MgO film followed by ?15.65 % for LSMO/Si and ?14.60 % for LSMO/Cg films at 80 K in a 1T magnetic field. Phase transition temperature (TP) is 224 K for LSMO/MgO, 200 K for LSMO/Si and above room temperature for films deposited on glass substrates. The films exhibit ferromagnetic transition at a temperature (TC) around 363 K for LSMO/MgO, 307 K for LSMO/Si and 352 K for LSMO/Cg thin film. TC such as 363 and 352 K are the high TC that has ever been reported for LSMO films deposited on MgO substrate with high lattice mismatch parameter and glass substrates with amorphous nature.  相似文献   

12.
The Bi3/2MgNb3/2O7 (BMN) thin films were prepared via a modified sol–gel process on glass substrates at various post-annealing temperatures. The crystalline structure, morphology and frequency response have been investigated systematically. The X-ray diffraction results indicated that the BMN thin films had different orientations depending on post-annealing temperature. Thin films annealed above 650 °C presented well crystallized cubic pyrochlore structure with (222) orientation, and (400) preferentially oriented were observed when they were annealed below 600 °C. The surface morphology images of the BMN thin films revealed different grain size and grain size distribution, and the average grain size increased from 28.3 to 37.0 nm as the post-annealing temperature increasing. The low frequency dielectric properties of the BMN thin films were closely correlated with the (222) orientation, which was favorable to enhanced dielectric constant and tunability. The high-frequency optical measurements revealed an average transmittance (T av ) varying between 76.6 and 82.2 % and band gap energy (E g ) ranging from 3.40 to 3.44 as a function of the temperature and the crystallite size. Thin film annealed at 700 °C possessed the best crystallinity and highest (222) orientation, and showed the best electrical properties, with a dielectric constant of 105 at 1 MHz, dielectric tunability of 25.8 %, and an average optical transmittance of 82.2 % in the visible range (400–800 nm), making it promising for optical/electronic tunable devices applications.  相似文献   

13.
Thick films of ((Bi,Pb)2Sr2Ca2Cu3O x )1?y (La0.7Sr0.3MnO3) y [(Bi2223)1?y (LSMO) y ] composites (y=0.01, 0.03, 0.05) are deposited by means of a simple melting-quenching-annealing method onto (001)-oriented LaAlO3(LAO) substrates. The constituent compounds Bi2223 and LSMO are prepared by standard solid-state reaction and sol–gel method, respectively. Measurements of the dependence of the magnetization on the temperature show the presence of superconducting and ferromagnetic phase below ~54 K and ~370 K, respectively. Current–voltage measurements on composites with y=0.01, 0.03 show that the superconducting critical current drop dramatically from I c≈350 mA at T=15 K to zero at T≈0.5T c (~25 K). The dependence of the magnetization on the external magnetic field applied in-plane or out-of-plane at 5 K displays well defined hysteresis loops, which correspond to the superconducting, diamagnetic phase. For T>T c, the ferromagnetic loop of LSMO is observed. The critical current density, J c, was determined for samples with y=0.01 and 0.05 by applying Kim’s model to the superconducting, diamagnetic hysteresis recorded at 5 K. The calculated values for J c(B) resulted to be smaller than those obtained for individual bulk Bi2223 samples due, probably, to the presence of LSMO particles whose ferromagnetic domains compete with the superconducting diamagnetic phase.  相似文献   

14.
Samples of La1.4Ca1.6Mn2?x Cu x O7 with 0≤x≤0.075 were prepared by a solid state reaction and characterized. The cell parameters and volume increase with increasing doped content in all the samples. The metal–insulator (MI) transition was observed in all the samples except for x=0.075. The doping increases the MI transition temperature and resistivity. The application of a magnetic field increases the transition temperature. It can be referred to the suppression of the ferromagnetic–insulator state around it. The magnetoresistance (MR) of the undoped and 0.025 Cu-doped samples is observed on a wide range of temperatures (3.5–283 K). The undoped one exhibits a maximum value of 39.7 % at 5.07 K under 5 T. The 0.025 Cu-doped one exhibits a maximum value of 40.65 % at 44 K in the same magnetic field. No MR effect is shown for the 0.05 doped sample. The 0.075 doped sample exhibits a small negative MR behavior and a second peak of resistivity at a very low temperature.  相似文献   

15.
Polycrystalline perovskite cobalt oxides Pr0.5Sr0.5CoO3 were prepared by the sol-gel method. We mainly study the anomalous magnetic transition of Pr0.5Sr0.5CoO3. We report the investigations of polycrystalline samples of the metallic ferromagnetic material Pr0.5Sr0.5CoO3 through measurements of X-ray diffraction, the magnetization, and the resistivity. We found an unusual anomaly around T A=120 K, much below the ferromagnetic transition (T C=228 K). Further using the variable temperature X-ray diffraction and electron spin resonance (ESR) measurements, we found that as the temperature goes down, the crystal structure changes obviously at T A=120 K. We show that this actually results in anomalous magnetic transition.  相似文献   

16.
The magnetic nature of the spinel antiferromagnet Li[Li x Mn2–x ]O4 with x = 0?0.15 has been studied with muon-spin-rotation and relaxation (μ+SR) spectroscopy. Both weak transverse field and zero field μ+SR measurements indicate that the whole sample enters into a static disordered magnetic phase below T N for all the samples measured; T N = 61 K for LiMn2O4, whereas 27–23 K for the x = 0.05?0.15 samples. It was also clarified that both the field distribution width and the field fluctuation rate show a clear change at the Jahn–Teller transition temperature (T JT = 280 K) for LiMn2O4, and a short-range cooperative JT distortion appears below 280 K even for Li[Li0.15Mn1.85]O4.  相似文献   

17.
Lead (Pb)-free, low melting temperature solders are required for step-soldering processes used to assemble micro-electrical mechanical system (MEMS) and optoelectronic (OE) devices. Stress–strain and creep studies, which provide solder mechanical properties for unified creep-plasticity (UCP) predictive models, were performed on the Pb-free 97In–3Ag (wt.%) and 58In–42Sn solders and counterpart Pb-bearing 80In–15Pb–5Ag and 70In–15Sn–9.6Pb–5.4Cd alloys. Stress–strain tests were performed at 4.4 × 10?5 s?1 and 8.8 × 10?4 s?1. Stress–strain and creep tests were performed at ?25, 25, 75, and 100°C or 125°C. The samples were evaluated in the as-fabricated and post-annealed conditions. The In–Ag solder had yield stress values of 0.5–8.5 MPa. The values of ΔH for steady-state creep were 99 ± 14 kJ/mol and 46 ± 11 kJ/mol, indicating that bulk diffusion controlled creep in the as-fabricated samples (former) and fast-diffusion controlled creep in the annealed samples (latter). The In–Sn yield stresses were 1.0–22 MPa and were not dependent on an annealed condition. The steady-state creep ΔH values were 55 ± 11 kJ/mol and 48 ± 13 kJ/mol for the as-fabricated and annealed samples, respectively, indicating the fast-diffusion controlled creep for the two conditions. The UCP constitutive models were derived for the In–Ag solder in the as-fabricated and annealed conditions.  相似文献   

18.
This study probes the effect of annealing temperature on electrical, optical and microstructural properties of indium tin oxide (ITO) films deposited onto soda lime glass substrates by conventional direct current (DC) magnetron reactive sputtering technique at 100 watt using an ITO ceramic target (In2O3:SnO2, 90:10 wt%) in argon atmosphere at room temperature. The films obtained are exposed to the calcination process at different temperature up to 700 °C. X–ray diffractometer (XRD), ultra violet-visible spectrometer (UV–vis) and atomic force microscopy (AFM) measurements are performed to characterize the samples. Moreover, phase purity, surface morphology, optical and photocatalytic properties of the films are compared with each other. The results obtained show that all the properties depend strongly on the annealing temperature. XRD results indicate that all the samples produced contain the In2O3 phase only and exhibit the polycrystalline and cubic bixbite structure with more intensity of diffraction lines with increasing the annealing temperature until 400 °C; in fact the strongest intensity of (222) peak is obtained for the sample annealed at 400 °C, meaning that the sample has the greatest ratio I 222/I 400 and the maximum grain size (54 nm). As for the AFM results, the sample prepared at 400 °C has the best microstructure with the lower surface roughness. Additionally, the transmittance measurements illustrate that the amplitude of interference oscillation is in the range from 78 (for the film annealed at 400 °C) to 93 % (for the film annealed at 100 °C). The refractive index, packing density, porosity and optical band gap of the ITO thin films are also evaluated from the transmittance spectra. According to the results, the film annealed at 400 °C obtains the better optical properties due to the high refractive index while the film produced at 100 °C exhibits much better photoactivity than the other films as a result of the large optical energy band gap.  相似文献   

19.
20.
Investigation of dielectric properties of layered compound, TlGaSe2, showed that it is a ferroelectric (T c  = 105·5 K) with an intermediate incommensurate phase (T i = 114·5 K). Our magnetic studies of layered compounds, TlCrS2 and TlCrSe2, for the first time revealed that the magnetic phase transition in these compounds are quasi two-dimensional ferromagnetic in nature and magnetic characteristics are T C = 90 K, T $_{C}^{p}$ = 115 K, μ eff = 3·26 μ B and T C = 105 K, T $_{C}^{p}$ = 120 K, μ eff = 3·05 μ B , respectively. Using the method of DTA, areas of homogeneous and heterogeneous coexistence of ferroelectric and ferromagnetic phase transitions in the systems, TlGaSe2–TlCrS2 and TlGaSe 2–TlCrSe2, were identified. The low-dimensional solid solutions and eutectic alloys in these systems can be used as basic materials for plenty of functional recorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号