首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of single-stage synthesis of dimethyl ether (DME) from synthesis gas makes it possible to obtain hydrocarbons directly from DME. The effect of the nature and concentration of components of the vapor–gas mixture that arrives at the stage of DME conversion to liquid hydrocarbons on activity and selectivity of a zinc–palladium zeolite catalyst has been examined. It has been found that and increase in DME concentration to more than 20 vol % in the reaction stream leads to lowering both DME conversion and gasoline selectivity and increasing the yield of byproducts. The presence of components such as H2, CO, H2O in the vapor–gas mixture ensures high stability of the catalytic system. Switching from the flow-through to the recycle operation mode increases the catalyst selectivity for gasoline, decreases the formation of durene, and reduces catalyst coking.  相似文献   

2.
The depleting supplies of non-renewable petroleum reserves, as well as their escalating costs, have directed a great deal of research toward the synthesis of hydrocarbons from coal. Synthesis of methanol from coal-derived synthesis gas is a well established technology, and methanol has been used as a feedstock for the synthesis of gasoline range hydrocarbons and olefins commercially. However, an efficient hydrocarbon synthesis process has been developed at the University of Akron using dimethyl ether as the starting feedstock. This UA/ EPRI' s DTH ( Dimethyl Ether to Hydrocarbons) process has significant advantages over its counterpart methanol conversion process in the areas of heat duties, hydrocarbon selectivities, product yield, and reactor size

Lower olefins are the intermediate products in the conversion of dimethyl ether to aromatic hydrocarbons. C2-C4 olefins and paraffins can be selectively produced by varying the operating parameters of the process, viz., temperature, pressure, DME concentration in the feed, space time, catalyst-to-inert packing ratio, etc. The present work focuses on the effect of key process variables on the dimethyl ether conversion to low molecular weight hydrocarbons in a fixed bed microreactor system over ZSM-5 type zeolite catalyst. Experimental results with respect to gaseous hydrocarbon product yields and selectivities have been examined in this study  相似文献   

3.
MethanoI-to-Gasoline (MTG) process is an excellent process which produces aromatics-rich gasoline from methanol over the ZSM-5 catalyst. The methanol feed in this process is usually derived from coal or natural gas based syngas.

The dehydration of methanol to dimethyl ether (DME) is a key intermediate step in converting methanol into gasoline. The substitution of syngas-to-methanol step in the MTG process by the direct one stage conversion of syngas-to-DME is thus a very attractive option. This substitution is particularly justified on the basis of the fact that DME results in virtually identical hydrocarbon product distribution as methanol.

Synthesis of gasoline via this direct DME route has several significant advantages over the MTG process, in the areas of product yield, selectivity, overall syngas conversion, exothermicity, and reactor size. The conceptual advantages of this DME-to-gasoline (DTG) process can be demonstrated in a laboratory scale fluidized bed gasoline synthesis unit.

This paper discusses the design philosophy of the fluidized bed reactor unit and its peripherals. The fabrication, assembly, and operation of the unit have also been discussed in detail.  相似文献   

4.
ABSTRACT

The depleting supplies of non-renewable petroleum reserves, as well as their escalating costs, have directed a great deal of research toward the synthesis of hydrocarbons from coal. Synthesis of methanol from coal-derived synthesis gas is a well established technology, and methanol has been used as a feedstock for the synthesis of gasoline range hydrocarbons and olefins commercially. However, an efficient hydrocarbon synthesis process has been developed at the University of Akron using dimethyl ether as the starting feedstock. This UA/ EPRI' s DTH ( Dimethyl Ether to Hydrocarbons) process has significant advantages over its counterpart methanol conversion process in the areas of heat duties, hydrocarbon selectivities, product yield, and reactor size

Lower olefins are the intermediate products in the conversion of dimethyl ether to aromatic hydrocarbons. C2-C4 olefins and paraffins can be selectively produced by varying the operating parameters of the process, viz., temperature, pressure, DME concentration in the feed, space time, catalyst-to-inert packing ratio, etc. The present work focuses on the effect of key process variables on the dimethyl ether conversion to low molecular weight hydrocarbons in a fixed bed microreactor system over ZSM-5 type zeolite catalyst. Experimental results with respect to gaseous hydrocarbon product yields and selectivities have been examined in this study  相似文献   

5.
The known hydrocarbon synthesis technologies from synthesis gas through methanol and/or dimethyl ether (DME), which were implemented in different scales plants are analyzed. Common features, advantages, and disadvantages of each technology have been noted. Several designs of TIPS RAS GTL-technology based on the original DME single-step and gasoline catalysts have been calculated and the influence of the syngas composition on the gasoline specific yield for the optimal design has been studied.  相似文献   

6.
Comparative data obtained by studying the synthesis of С5+ hydrocarbons from dimethyl ether (DME) on catalysts using MFI zeolites available from different manufacturers are presented. It has been shown that MFI zeolite samples substantially differ in their acidic properties and structural, morphological, and textural characteristics. The catalysts based on different MFI zeolites also noticeable differ in the yield and chemical composition of С5+ hydrocarbons. By switching from the stand-alone operation of a DME conversion reactor to the joint operation of two reactors for synthesis of oxygenates (DME and/or methanol) from synthesis gas and synthesis of hydrocarbons from oxygenates connected by a single circuit, high selectivity for hydrocarbons of the gasoline fraction is achieved with the catalyst based on the MFI zeolite, for which the bands characteristic of Н3О+ acid sites are observed in diffuse reflectance IR spectra.  相似文献   

7.
HZSM-5分子筛与铜基的复合催化剂上合成气制二甲醚   总被引:32,自引:5,他引:27  
以HZSM-5分子筛与铜基甲醇合成催化剂组成复合催化剂用于从合成气制二甲醚,以HZSM-分子筛替代γ-Al2O3作脱水催化剂可降低复合催化剂的活性温度。在250~260℃,HZSM-5分子筛复合的催化剂,其DME选择性、时空产率均高于γ-Al2O3。甲醇合成催化剂与HZSM-5分子筛配比为3∶2时,CO转化率、DME时空产率较高。不同甲醇合成催化剂只影响复合催化剂的CO转化率,不影响DME选择性。不同硅铝比的HZSM-5分子筛对复合催化剂的DME选择性影响显著,当硅铝比从32.79增至52.09,DME选择性增大,MeOH、CO2选择性下降;当硅铝比从52.09增至70.70时,DME、MeOH、CO2选择性几乎不变。  相似文献   

8.
The catalytic properties of zeolite catalysts modified with rhodium compounds in the synthesis of olefins from dimethyl ether (DME) and methanol (MeOH) have been studied. The optimum concentration of rhodium in the composition of a zeolite catalyst has been determined. It has been shown that one of the possible precursors of ethylene in the conversion of DME is ethanol, which, under reaction conditions, can be formed through both the DME isomerization and methanol homologation stages.  相似文献   

9.
在甲醇气相脱水合成二甲醚反应中,考察了催化剂酸性及反应工艺条件对反应的影响。分子筛的Bronsted酸中心和Lewis酸中心都是甲醇脱水反应的活性中心,而强酸中心是烯烃产生的主要场所。研究表明,采用硅铝比为60的HZSM-23分子筛作为催化剂,适宜的工艺条件为:反应质量空速5 h-1,温度300℃,压力0.1MPa,甲醇转化率为97.6%,二甲醚选择性为95%。  相似文献   

10.
催化剂比例与温度对浆态床合成气制二甲醚的影响   总被引:11,自引:0,他引:11  
采用甲醇合成催化剂和甲醇脱水催化剂组成的双功能催化剂,在两者比例1~10和反应温度260~300℃范围内,研究了浆态床合成气制二甲醚双功能催化剂的性能,发现催化剂比例对催化活性影响显著。在催化剂比例1~3范围内,CO、H2转化率和二甲醚生成速率随催化剂比例的增大而很快升高,在催化剂比例3~7时达最高值,而后缓慢下降;双功能催化剂间存在协同作用,可显著提高二甲醚与甲醇当量生成速率;温度对二甲醚选择性影响显著,随着温度升高,烃类选择性增加,二甲醚选择性相应降低。最佳催化剂比例为3~5,与此匹配的反应温度为280~290℃  相似文献   

11.
杂多酸催化甲醇液相合成二甲醚   总被引:8,自引:1,他引:8  
刘俊峰  刘源  李学忠 《石油化工》2006,35(10):924-926
研究了杂多酸催化甲醇液相合成二甲醚(DME)的工艺,考察了反应温度、反应时间、催化剂种类及用量对甲醇转化率、DME选择性、DME收率的影响,确定了适宜的工艺条件。实验结果表明,杂多酸对甲醇液相合成DME的催化活性高低顺序为:磷钨酸>硅钨酸>磷钼酸,Hamm ett酸性滴定法测定3种杂多酸的酸强度函数范围均为-8.2~-3.7;采用磷钨酸作催化剂,甲醇液相合成DME较适宜的工艺条件为:反应温度180℃、反应时间6h、每100mL甲醇的催化剂用量3.0g。在该条件下,甲醇转化率为65.4%、DME选择性为99.8%、DME收率为32.6%。  相似文献   

12.
直接合成二甲醚的铜-锰催化剂   总被引:11,自引:2,他引:9  
以Cu -Mn为主要活性组份 ,以锌、铬、钨、钼、铁、钴、镍等为助催化剂 ,采用共浸渍法 ,将铜、锰等直接负载在氧化铝上 ,获得了一种新型的负载型一步合成二甲醚催化剂。该催化剂具有制备工艺简单、强度高、稳定性好、易重复等特点。试验结果显示 :在负载的Cu -Mn催化剂上 ,CO加氢可以生成二甲醚 ,而且当n(Cu) /n(Mn) =1 /2时 ,CO的转化率和二甲醚的收率均佳 ;少量锌的添加有利于提高催化剂的活性和二甲醚的选择性 ;而铁、钴、镍的添加主要使CO发生甲烷化反应。  相似文献   

13.
三相搅拌釜反应器中二氧化碳加氢合成二甲醚   总被引:14,自引:0,他引:14  
在反应温度 2 3 0~ 2 80℃、压力 2~ 5MPa下 ,采用V(CO2 ) /V(H2 ) =1 :3与 1 :4的原料气 ,以液态医用石蜡为惰性液相介质 ,使用C3 0 2铜基催化剂和CM 3 1改性分子筛组成复合催化剂 ,在搅拌釜反应器中研究CO2 加H2 合成二甲醚 (DME) ,得到不同反应条件下的CO2 转化率、二甲醚与甲醇的选择性。结果表明两种催化剂的配比对反应结果有影响 ,CM 3 1催化剂用量多时 ,反应转化率提高 ,二甲醚选择性提高。  相似文献   

14.
浆态床合成二甲醚反应工艺条件的研究   总被引:12,自引:0,他引:12  
考察了反应温度、反应压力、进料空速以及催化剂配比对于浆态床合成二甲醚反应过程的影响。结果表明 :在反应温度为 2 40~ 2 80℃范围内 ,随着反应温度的升高 ,CO的转化率逐渐增加 ,在 2 70℃达到最大值后开始下降 ;在反应压力为 2 0~ 5 0MPa范围内 ,随着反应压力的升高 ,CO的转化率和二甲醚的选择性逐渐增加 ;在空速为 80 0~ 5 0 0 0h-1范围内 ,随着空速的增加 ,CO的转化率先增加 ,在 30 0 0h 1达到最大值 ,然后逐渐减小 ;催化剂比例对于CO转化率、二甲醚的选择性以及二甲醚的时空收率都有较大的影响 ;在甲醇合成催化剂与脱水催化剂比例为 4~ 5时 ,CO转化率与DME选择性最好。  相似文献   

15.
二甲醚的应用及其下游产品的开发   总被引:18,自引:0,他引:18  
介绍了二甲醚的应用及其下游产品的开发利用情况。二甲醚可由合成气或甲醇制得。二甲醚可用作化工原料、气雾剂、溶剂、甲基化剂、发泡剂、偶联剂、致冷剂和燃料。  相似文献   

16.
合成气直接制取二甲醚的双功能催化剂   总被引:19,自引:0,他引:19  
采用反应评价并结合XRD、TPR、吡啶-TPD、CO2-TPD、XPS等物化测试手段研究了不同制备方法对CuO/ZnO/Al2O3催化剂结构和催化性能的影响,揭示了不同方法制备催化剂的特点,发现共沉淀沉积法制备的CuO/ZnO/Al2O3催化剂对合成气直接制取二甲醚具有优良的催化性能,CO转化率达82%,二甲醚在有机物中选择性为96%。  相似文献   

17.
The catalytic properties of zeolites modified with titanium or with titanium and sulfur have been studied in the conversion of dimethyl ether (DME) to lower olefins and high-octane hydrocarbon components of gasoline. Using ammonia temperature-programmed desorption, it has been shown that the introduction of titanium and sulfur leads to an increase in the number of medium-strength acid sites and superacid sites. The effect of the operating parameters of the DME conversion to synthetic hydrocarbons has been analyzed, and changes in activity and selectivity for target products in oxidative regeneration have been studied.  相似文献   

18.
The role played by the catalyst in the mehhanol-to-gasoline process under varying conditions is significant. The mobil ZSM-5 catalyst yielded dimethyl ether as a major product in earlier experiments conducted in the Chemical Engineering Department. This prompted us to ascertain those parameters which yielded a high percentage of gasoline and minimized or eliminated dimethyl ether. A number of parameters like residence time, reaction temperature, and methanol catalyst weight ratio were studied and knowledge regarding how best a high gasoline yield could be produced was obtained. Product characterization was done by gas chromatographic analysis. GC-MS proved to be an extremely beneficial tool.  相似文献   

19.
Conversion of methanol on unmodified industrial cracking catalysts (ICC) containing zeolite Y (KM, Zeocar-2 and KM-R) and NZHS (KM-1 and KM-1R), unmodified and modified with phosphoric acid, was investigated. It was shown that conversion from selective formation of hydrocarbon products whose composition is a function of the temperature to selective formation of dimethyl ether (DME) is observed on KM-1 catalyst as a function of the duration of the experiment. The catalyzates formed on the KM and Zeocar-2 catalysts and hydrocarbons and DME (∼50%) differ from the catalyzates formed on the KM-1 catalyst, with a stable composition for the duration of the experiments. Modified catalysts KM-1R and KM-R provide a stable, highly selective yield of hydrocarbons and DME, respectively. The results obtained demonstrate the promise of using ICC for dehydration of methanol into DME.  相似文献   

20.
采用等温积分反应器研究了常压下甲醇在CM-3-1催化剂上脱水生成二甲醚的本征动力学,得到的动力学方程为:γM=8.4245×1010e-125436RTyM1.988yD-0.137yW0.136(1-yDyWKpy2M)(mol/g·h)该动力学方程可园整为:γM=5.50×1010e-122867RTy2M(1-yDyWKpy2M)(mol/g·h)该催化剂是化工部西南化工研究院开发的气相法甲醇脱水制取二甲醚催化剂,已在广东中山精细化工厂投入工业使用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号