首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Controlling the spatial organization of objects at the nanoscale is a key challenge in enabling their technological application. Biomolecular assemblies are attractive nanostructures owing to their biocompatibility, straightforward chemical modifiability, inherent molecular recognition properties and their availability for bottom-up fabrication. Aromatic peptide nanotubes are self-assembled nanostructures with unique physical and chemical stability and remarkable mechanical rigidity. Their application in the fabrication of metallic nanowires and in the improvement of the sensitivity of electrochemical biosensors have already been demonstrated. Here we show the formation of a vertically aligned nanoforest by axial unidirectional growth of a dense array of these peptide tubes. We also achieved horizontal alignment of the tubes through noncovalent coating of the tubes with a ferrofluid and the application of an external magnetic field. Taken together, our results demonstrate the ability to form a two-dimensional dense array of nanotube assemblies with either vertical or horizontal patterns.  相似文献   

2.
In nature, biological nanomaterials are synthesized under ambient conditions in a natural microscopic‐sized laboratory, such as a cell. Biological molecules, such as peptides and proteins, undergo self‐assembly processes in vivo and in vitro, and these monomers are assembled into various nanometer‐scale structures at room temperature and atmospheric pressure. The self‐assembled peptide nanostructures can be further organized to form nanowires, nanotubes, and nanoparticles via their molecular‐recognition functions. The application of molecular self‐assemblies of synthetic peptides as nanometer‐scale building blocks in devices is robust, practical, and affordable due to their advantages of reproducibility, large‐scale production ability, monodispersity, and simpler experimental methods. It is also beneficial that smart functionalities can be added at desired positions in peptide nanotubes through well‐established chemical and peptide syntheses. These features of peptide‐based nanotubes are the driving force for investigating and developing peptide nanotube assemblies for biological and non‐biological applications.  相似文献   

3.
Enzyme-catalyzed reactions can be exploited to control molecular self-assembly under physiological conditions by converting nonassembling precursors into self-assembly building blocks. Two complementary approaches based on aromatic short-peptide derivatives that form molecular hydrogels are demonstrated. Firstly, it is shown that esterase-directed self assembly via hydrolysis of hydrophobic N-(fluorenyl-9-methoxycarbonyl) (Fmoc)-peptide methyl esters give rise to formation of transparent hydrogels composed of defined peptide nanotubes. The internal and external diameters of these tubes are highly tunable, depending on the amino acid composition and chain length of the building blocks. Secondly, protease-directed self-assembly of Fmoc-peptide esters is achieved via amide-bond formation (reversed hydrolysis) for combinations of Fmoc-threonine and leucine/phenylalanine methyl esters, producing fibrous hydrogels. Upon treatment with an esterase, these systems revert back to solution, thus providing a two-stage solution-gel-solution transition.  相似文献   

4.
Directed three-dimensional patterning of self-assembled peptide fibrils   总被引:1,自引:0,他引:1  
Molecular self-assembly is emerging as a viable "bottom-up" approach for fabricating nanostructures. Self-assembled biomolecular structures are particularly attractive, due to their versatile chemistry, molecular recognition properties, and biocompatibility. Among them, amyloid protein and peptide fibrils are self-assembled nanostructures with unique physical and chemical stability, formed from quite simple building blocks; their ability to work as a template for the fabrication of low resistance, conducting nanowires has already been demonstrated. The precise positioning of peptide-based nanostructures is an essential part of their use in technological applications, and their controlled assembly, positioning, and integration into microsystems is a problem of considerable current interest. To date, their positioning has been limited to their placement on flat surfaces or to the fabrication of peptide arrays. Here, we propose a new method for the precise, three-dimensional patterning of amyloid fibrils. The technique, which combines femtosecond laser technology and biotin-avidin mediated assembly on a polymeric matrix, can be applied in a wide variety of fields, from molecular electronics to tissue engineering.  相似文献   

5.
We report a structural characterization of self-assembling nanostructures. Using atomic force microscopy (AFM), we discovered that partially hydrolyzed alpha-lactalbumin organizes in a 10-start helix forming tubes with diameters of only 21 nm. We probed the mechanical strength of these nanotubes by locally indenting them with an AFM tip. To extract the material properties of the nanotubes, we modeled the experiment using finite element methods. Our study shows that artificial helical protein self-assembly can yield very stable, strong structures that can function either as a model system for artificial self-assembly or as a nanostructure with potential for practical applications.  相似文献   

6.
Fabrication of functional nanostructures is a prominent issue in nanotechnology, because they often exhibit unique properties that are different from the individual building blocks. Protein cage nanoparticles are attractive nanobuilding blocks for constructing nanostructures due to their well‐defined symmetric spherical structures, polyvalent nature, and functional plasticity. Here, a lumazine synthase protein cage nanoparticle is genetically modified to be used as a template to generate functional nanobuilding blocks and covalently display enzymes (β‐lactamase) and protein ligands (FKBP12/FRB) on its surface, making dual‐functional nanobuilding blocks. Nanoreaction clusters are subsequently created by ligand‐mediated alternate deposition of two complementary building blocks using layer‐by‐layer (LbL) assemblies. 3D nanoreaction clusters provide enhanced enzymatic activity compared with monolayered building block arrays. The approaches described here may provide new opportunities for fabricating functional nanostructures and nanoreaction clusters, leading to the development of new protein nanoparticle‐based nanostructured biosensor devices.  相似文献   

7.
Biological self-assembled structures are receiving increasing focus within micro- and nanotechnology, for example, as sensing devices, due to the fact that they are cheap to produce and easy to functionalize. Therefore, methods for the characterization of these structures are much needed. In this paper, electrostatic force microscopy (EFM) was used to distinguish between hollow nanotubes formed by self-assembly by a simple aromatic dipeptide, L-phenylalanine, silver-filled peptide-based nanotubes, and silver wires placed on prefabricated SiO2 surfaces with a backgate. The investigation shows that it is possible to distinguish between these three types of structures using this method. Further, an agreement between the detected signal and the structure of the hollow peptide was demonstrated; however only qualitative agreement with the mathematical expressing of the tubes is shown.  相似文献   

8.
Novel Y-junction polyaniline (PANI) nanorods and nanotubes (40-100 nm in diameter and a few micrometers in length) were selectively prepared, for the first time, using in situ self-assembly of water-soluble Fe3O4 nanoparticles coated with polyethylene glycol(5) nonylphenyl ether (NP5) and cyclodextrin (CD) as templates and pH control in an aqueous medium. The morphology of Fe3O4 nanoparticles and the PANI nanostructures (rods and tubes) was determined by TEM and the effects of reaction conditions on the morphology of PANI nanostructures were also studied. Characterization experiments including FTIR and X-ray diffraction were carried out to study the chemical and electronic structures of the PANI nanostructures.  相似文献   

9.
Zhong M  Zheng M  Ma L  Li Y 《Nanotechnology》2007,18(46):465605
Versatile indium oxide tubular nanostructures (well-aligned nanotube arrays, flower-like tubular structures, and square nanotubes) were fabricated by a facile and reliable chemical vapor deposition (CVD) technique, taking advantage of the self-assembly property and substrate-induced epitaxial growth mechanism. The technique has a few advantages, such as low growth temperature, nonexistence of catalyst, template-free synthesis, direct bonding to the semiconductor substrates, etc. This strategy might extend the approach of synthesizing desirable nanostructures of other important low-melting metal oxides for potential applications.  相似文献   

10.
The fabrication of multifunctional nanomaterials and their subsequent use for novel applications in various branches of nanotechnology has been under intense scrutiny. Particularly in the area of nanomechanics, the design of multicomponent nanostructures with an integrated multifunctionality would enable the construction of building blocks for nanoscale analogues of macroscopic objects. Here, we introduce a new class of flexible nanostructures: metallic nanorods with polyelectrolyte hinges, synthesized using layer-by-layer electrostatic self-assembly of oppositely charged polyelectrolytes on barcode metal nanorods followed by segment-selective chemical etching. Nanorods with hinges that consist of one polyelectrolyte bilayer display considerable flexibility, but with a greater number of bilayers the flexibility of the hinge is significantly reduced. Magnetically induced bending about the polymer hinge is illustrated through the incorporation of nickel segments into the barcodes and the application of an external fluctuating magnetic field.  相似文献   

11.
Carbon nanotubes have a variety of remarkable electronic and mechanical properties that, in principle, lend them to promising optoelectronic applications. However, the field has been plagued by heterogeneity in the distributions of synthesized tubes and uncontrolled bundling, both of which have prevented nanotubes from reaching their full potential. Here, a variety of recently demonstrated solution‐processing avenues is presented, which may combat these challenges through manipulation of nanoscale structures. Recent advances in polymer‐wrapping of single‐walled carbon nanotubes (SWNTs) are shown, along with how the resulting nanostructures can selectively disperse tubes while also exploiting the favorable properties of the polymer, such as light‐harvesting ability. New methods to controllably form nanoengineered SWNT networks with controlled nanotube placement are discussed. These nanoengineered networks decrease bundling, lower the percolation threshold, and enable a strong enhancement in charge conductivity compared to random networks, making them potentially attractive for optoelectronic applications. Finally, SWNT applications, to date, in organic and perovskite photovoltaics are reviewed, and insights as to how the aforementioned recent advancements can lead to improved device performance provided.  相似文献   

12.
Dense arrays of self‐assembled nanostructures are highly important for the fabrication of high‐performance sensors of large surface area. The organized incorporation of novel biocompatible organic nanostructures into extremely sensitive amperometric biosensors is demonstrated. Peptide nanoforest biosensors for phenol detection were 17‐fold more sensitive than uncoated electrode and more sensitive than those modified with carbon nanotubes or combined coating. The high sensitivity reported, together with the biocompatibility and the ability to chemically and biologically modify these elements, may provide a novel platform for biosensors design and fabrication for environmental monitoring, homeland security, and other applications.  相似文献   

13.
Interferometric lithography (IL) is a powerful technique for the definition of large-area, nanometer-scale, periodically patterned structures. Patterns are recorded in a light-sensitive medium, such as a photoresist, that responds nonlinearly to the intensity distribution associated with the interference of two or more coherent beams of light. The photoresist patterns produced with IL are a platform for further fabrication of nanostructures and growth of functional materials and are building blocks for devices. This article provides a brief review of IL technologies and focuses on various applications for nanostructures and functional materials based on IL including directed self-assembly of colloidal nanoparticles, nanophotonics, semiconductor materials growth, and nanofluidic devices. Perspectives on future directions for IL and emerging applications in other fields are presented.  相似文献   

14.
Single‐walled carbon nanotubes have considerable potential as building blocks in future nanoscale electronics. The tubes exist in two modifications, metallic and semiconducting, which might be used in a range of electronic applications. One of the grand challenges is to separate metallic from semiconducting tubes in substantial quantities. In this respect, this article gives a brief overview over the separation techniques in this new field of nanotube research.  相似文献   

15.
This paper describes a novel general strategy for fabricating protein-polyion multilayers by electrostatic layer-by-layer (LBL) self-assembly on carbon nanotube templates. Such a noncovalent functionalization method is important for preserving the activity of biomolecular, the mechanical, and electrical properties of carbon nanotubes. Glucose oxidase and poly(diallyldimethylammonium) chloride polymer (PDDA) were used as models to investigate the LBL process on CNT templates. High-resolution TEM and electrochemical characterization confirm the formation of LBL nanostructures on carboxyl functionalized carbon nanotubes. We have also demonstrated the applications of these nanoshell bioreactors to direct electrochemistry of protein and biosensing. This strategy can be applied to assemble other biological molecules such as antibody, antigen, and DNA for wide bioassay applications.  相似文献   

16.
This article reviews the use of electronic quality single-walled carbon nanotubes grown via chemical vapor deposition (CVD) approaches at high temperatures as building blocks for fabricating flexible field-effect devices, such as thin-film transistors (TFTs) and chemical sensors. Dry transfer printing technique is developed for forming films of CVD nanotubes on low-temperature plastic substrates. Examples of TFTs with the use of nanotubes and thin dielectrics and hydrogen sensors with the use of nanotubes decorated with palladium nanoparticles are discussed in detail to demonstrate the promising potentiality of single-walled carbon nanotubes for building high performance flexible devices, which can find applications where traditional devices on rigid substrates are not suitable.  相似文献   

17.
Carbon nanotubes loaded with magnetic particles   总被引:1,自引:0,他引:1  
We describe a simple and versatile technique to produce magnetic tubes by filling carbon nanotubes (CNTs) with paramagnetic iron oxide particles ( approximately 10 nm diameter). Commercial ferrofluids were used to fill CNTs with an average outer diameter of 300 nm made via chemical vapor deposition into alumina membranes. Transmission electron microscopy study shows a high density of particles inside the CNT. Experiments using external magnetic fields demonstrate that almost 100% of the nanotubes become magnetic and can be easily manipulated in magnetic field. These one-dimensional magnetic nanostructures can find numerous applications in nanotechnology, memory devices, optical transducers for wearable electronics, and in medicine.  相似文献   

18.
The fabrication of three-dimensional assemblies consisting of large quantities of nanowires is of great technological importance for various applications including (electro-)catalysis, sensitive sensing, and improvement of electronic devices. Because the spatial distribution of the nanostructured material can strongly influence the properties, architectural design is required in order to use assembled nanowires to their full potential. In addition, special effort has to be dedicated to the development of efficient methods that allow precise control over structural parameters of the nanoscale building blocks as a means of tuning their characteristics. This paper reports the direct synthesis of highly ordered large-area nanowire networks by a method based on hard templates using electrodeposition within nanochannels of ion track-etched polymer membranes. Control over the complexity of the networks and the dimensions of the integrated nanostructures are achieved by a modified template fabrication. The networks possess high surface area and excellent transport properties, turning them into a promising electrocatalyst material as demonstrated by cyclic voltammetry studies on platinum nanowire networks catalyzing methanol oxidation. Our method opens up a new general route for interconnecting nanowires to stable macroscopic network structures of very high integration level that allow easy handling of nanowires while maintaining their connectivity.  相似文献   

19.
Carbon nanotubes have unique mechanical, electronic, optical and thermal properties, which make them attractive building blocks in the field of nanotechnology. However, their organization into well-defined straight or curved geometries and arrays on surfaces remains a critical challenge for their integration into functional nanosystems. Here we show that combined surface- and flow-directed growth enable the controlled formation of uniquely complex and coherent geometries of single-walled carbon nanotubes, including highly oriented and periodic serpentines and coils. We propose a mechanism of non-equilibrium self-organization, in which competing dissipative forces of adhesion and aerodynamic drag induce oscillations in the nanotubes as they adsorb on the surface. Our results demonstrate the use of 'order through fluctuations' to shape nanostructures into complex geometries. The nanotube serpentines and loops are shown to be electrically conducting and could therefore find a wide range of potential applications, such as receiving and transmitting antennas, heating and cooling elements, optoelectronic devices and single-molecule dynamos.  相似文献   

20.
By virtue of their native structures, tubulin dimers are protein building blocks that are naturally preprogrammed to assemble into microtubules (MTs), which are cytoskeletal polymers. Here, polycation‐directed (i.e., electrostatically tunable) assembly of tubulins is demonstrated by conformational changes to the tubulin protofilament in longitudinal and lateral directions, creating tubulin double helices and various tubular architectures. Synchrotron small‐angle X‐ray scattering and transmission electron microscopy reveal a remarkable range of nanoscale assembly structures: single‐ and double‐layered double‐helix tubulin tubules. The phase transitions from MTs to the new assemblies are dependent on the size and concentration of polycations. Two characteristic scales that determine the number of observed phases are the size of polycation compared to the size of tubulin (≈4 nm) and to MT diameter (≈25 nm). This work suggests the feasibility of using polycations that have scissor‐ and glue‐like properties to achieve “programmable breakdown” of protein nanotubes, tearing MTs into double‐stranded tubulins and building up previously undiscovered nanostructures. Importantly, a new role of tubulins is defined as 2D shape‐controllable building blocks for supramolecular architectures. These findings provide insight into the design of protein‐based functional materials, for example, as metallization templates for nanoscale electronic devices, molecular screws, and drug delivery vehicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号