首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
This paper derives the average bit error probability (BEP) of differential quaternary phase shift keying (DQPSK) with postdetection equal gain combining (EGC) diversity reception over independent and arbitrarily correlated fading channels. First, using the associated Legendre functions, the average BEP of DQPSK is analyzed over independent Rayleigh, Nakagami-m, and Rician fading channels. Finite-series closed-form expressions for the average BEP of DQPSK over L-branch independent Rayleigh and Nakagami-m fading channels (for integer Lm) are presented. Besides, a finite-series closed-form expression is given for the average BEP of differential binary phase shift keying (DBPSK) with EGC over independent Rician fading channels. Second, an alternative approach is propounded to study the performance of DQPSK over arbitrarily correlated Nakagami-m and Rician fading channels. Relatively simple BEP expressions in terms of a finite sum of a finite-range integral are proposed. Moreover, the penalty in signal to noise ratio (SNR) due to arbitrarily correlated channel fading is also investigated. Finally, the accuracy of the results is verified by computer simulation.  相似文献   

2.
This paper studies differential space-time modulation using diversity-encoded differential amplitude and phase shift keying (DAPSK) for the multiple-input multiple-output (MIMO) system over independent but not identically distributed (inid) time-correlated Rician fading channels. An asymptotic maximum likelihood (AML) receiver is developed for differentially detecting diversity-encoded DAPSK symbol signals by operating on two consecutive received symbol blocks sequentially. Based on Beaulieu’s convergent series, the bit error probability (BEP) upper bound is analyzed for the AML receiver over inid time-correlated Rician fading channels. Particularly, an approximate BEP upper bound of the AML receiver is also derived for inid time-invariant Rayleigh fading channels with large received signal-to-noise power ratios. By virtue of this approximate bound, a design criterion is developed to determine the appropriate diversity encoding coefficients for the proposed DAPSK MIMO system. Numerical and simulation results show that the AML receiver for diversity-encoded DAPSK is nearly optimum when the average received signal-to-noise power ratios are high and the channel is heavily correlated fading and can provide better error performance than conventional noncoherent MIMO systems when the effect of non-ideal transmit power amplification is taken into account.  相似文献   

3.
与准静态独立的瑞利衰落信道模型相比较,在MIMO(Multi-Input Multi-Output)系统中,实际信道更趋向于空时相关莱斯快衰落。考虑到MIMO系统的收发分集优势以及收发两端天线阵列的空时相关性,在简单论述了MIMO系统和信道模型的基础上,该文利用多变量统计学理论,推导出MIMO系统在空时相关莱斯快衰落信道下平均成对差错概率上界的闭合表达式,并探讨了信道特性对系统性能的影响,然后给出相应仿真结果。  相似文献   

4.
The effect of spatial correlation on the performance of orthogonal space-time block codes (OSTBCs) over multiple-input-multiple-output (MIMO) Rician fading channels is studied. Asymptotic error-rate formulas for OSTBC with high average signal-to-noise ratios (ASNRs) over arbitrarily correlated Rician MIMO channels are derived in terms of the diversity and coding gains. Our results show that, in correlated fading, the phase vector phi of the channel line-of-sight (LOS) components affects the effective Rice K-factor at the OSTBC receiver output and, hence, may result in a coding gain that is significantly higher than that for independent Rician MIMO channels. Furthermore, when the channel covariance matrix is rank deficient and under some additional mild conditions, the error and outage probabilities of OSTBC achieve those in a nonfading additive-white-Gaussian-noise channel. For both cases of full-rank and rank-deficient channel covariance matrices, analytical expressions of optimal and worst case phase vectors phi, and exact upper and lower bounds of OSTBC performance are derived. These results provide new insights into the achievable performance of OSTBC over correlated Rician MIMO channels and, if incorporated into future multiple antenna systems design, will bring about significant performance enhancement  相似文献   

5.
The final closed-form expression for bit error probability (BEP) is presented for a DS-CDMA system using a maximal ratio combining (MRC) diversity over a Rician fading channel. The accuracy of the BEP estimate evaluated by this expression is verified by comparison with a semi-analytic simulation result. The effect that diversity order has on the BEP is also considered for typical multipath delay profiles with different Rician ratios  相似文献   

6.
We derive a formula for the bit error probability (BEP) of M-ary continuous phase frequency shift keying with differential phase detection and maximum ratio combining diversity in Rician fast-fading channels. We assume that transmitter and receiver filters distort the signal and limit the noise. We compute the BEP as a function of energy-to-noise ratio per bit (Eb/N0) and other system and channel parameters: Rician factor K=0, 6 dB, 10, ∞; number of diversity channels L=1, 2, 3; Doppler frequency shift fD T=0, 0.01, 0.02; Butterworth filters in transmitter and receiver of order NT=3 and NR=4; optimal sampling time and filter bandwidth. In all cases the BEP is significantly reduced by diversity  相似文献   

7.
This paper discusses the performance of communication systems using binary coherent and differential phase-shift keyed (PSK) modulation, in correlated Rician fading channels with diversity reception. The presence of multiple Rician-faded cochannel users, which may have arbitrary and nonidentical parameters, is modeled exactly. Exact bit error probability (BEP) expressions are derived via the moment generating functions (MGFs) of the relevant decision statistics, which are obtained through coherent detection with maximum ratio combining for coherent PSK modulation, and differential detection with equal gain combining (EGC) for differential modulation. Evaluating the exact expressions requires a complexity that is exponential in the number of interferers. To avoid this potentially time-consuming operation, we derive two low-complexity approximate methods each for coherent and differential modulation formats, which are more accurate than the traditional Gaussian approximation approach. Two new and interesting results of this analysis are: (1) unlike in the case of Rayleigh fading channels, increasing correlation between diversity branches may lead to better performance in Rician fading channels and (2) the phase distribution of the line-of-sight or static fading components of the desired user has a significant influence on the BEP performance in correlated diversity channels  相似文献   

8.
We derive a formula for the bit-error probability (BEP) of binary partial-response continuous-phase modulation (PRCPM) with N-bit differential phase detection (DPD) in a Rician fading channel subject to L-branch maximum ratio combining (MRC) diversity. We compute the BEP for minimum-shift keying (MSK), Gaussian MSK (GMSK), and 2 RC (2-b-duration raised cosine) frequency signals as a function of the energy-to-noise ratio per bit Eb/N0 and other system and channel parameters [N=1 and 2 and L=1, 2, and 3, Rician factor K=-∞, 0, 6, 10, and ∝ dB, Doppler frequency shift fDT=0, 0.01, and 0.02, Gaussian premodulation filter bandwidth BgT=∞, 0.5, 0.25, and the presence or absence of a Doppler frequency tracking loop (DFTL) in the receiver]. In all cases, the BEP is significantly reduced by diversity  相似文献   

9.
We present a symbol-by-symbol channel estimation receiver for an orthogonal space-time block coded system, and derive its analytical performance on a slow, nonselective, Rayleigh fading channel. Exact, closed-form expressions for its bit error probability (BEP) performance for M-ary phase shift-keying modulations are obtained, which enable us to theoretically predict the actual performance achievable under practical conditions with channel estimation error. Our BEP expressions show explicitly the dependence of BEP on the mean square error of the channel estimates, which in turn depend on the channel fading model and the channel estimator used. Tight upper bounds are presented that show more clearly the dependence of the BEP on various system parameters. Simulation results using various fading models are obtained to demonstrate the validity of the analysis.  相似文献   

10.
In this paper, we analyze the bit error probability (BEP) of binary and quaternary differential phase shift keying (2/4 DPSK) and noncoherent frequency shift keying (NCFSK) with postdetection diversity combining in arbitrary Rician fading channels. The model is quite general in that it accommodates fading correlation and noise correlation between different diversity branches as well as between adjacent symbol intervals. We show that the relevant decision statistic can be expressed in a noncentral Gaussian quadratic form, and its moment generating function (MGF) is derived. Using the MGF and the saddle point technique, we give an efficient numerical quadrature scheme to compute the BEP. The most significant contribution of the paper, however, lies in the derivation of a closed-form cumulative distribution function (cdf) for the decision statistic. As a result, a closed-form BEP expression in the form of an infinite series of elementary functions is developed, which is general and unifies previous published BEP results for 2/4 DPSK and NCFSK for multichannel reception in Rician fading. Specialization to some important cases are discussed and, as a byproduct, a new and general finite-series expression for the BEP in arbitrarily correlated Rayleigh fading is obtained. The theory is applied to study 2/4 DPSK and NCFSK performance for independent and correlated Rician fading channels; and some interesting findings are presented  相似文献   

11.
We develop a semi-deterministic semi-stochastic channel model for the multiple-input multiple-output (MIMO) system under the macrocell environment with local-to-mobile and local-to-base scatterers. We show that employing closely-spaced antennas (e.g., phased array) at the base station is capable of achieving diversity via the local-to-base scatterers, which avoids impractical large aperture requirement for the spatial diversity at the base station. We evaluate the system performance in terms of ergodic capacity, average pairwise error probability (PEP), and signal-to-noise ratio (SNR); derive closed-form expressions for lower and upper bounds on the capacity and PEP; and show that the capacity, multiplexing and diversity gains are limited by the number of multipaths around the base station. The base-station array affects the lower bound on the capacity and the upper bound on the error probability through the same metric; thus, optimal design of the base station array based on this metric will optimize the two different information theoretic measures simultaneously. The fading correlation matrix also appears in the two bounds in the same form. To improve the performance of the macrocell MIMO system, we propose using artificial scatterers and discuss optimal design issues. Numerical examples demonstrate the accuracy of our analytical results and tightness of performance bounds.  相似文献   

12.
RicianAccurate performance analysis for linear receivers over frequency- and time-selective asynchronous code-division multiple-access Rician-fading channels is very useful and a general approach to this topic is very desirable. In this paper, by using a decision variable-based moment generating function approach, we provide a unified bit-error probability (BEP) analysis framework for different linear detectors with binary or quaternary differential phase-shift keying and postdetection combining over Rician-fading channels, taking into account the effects of the spreading code correlation, the system and fading-channel parameters, diversity combining, and branch correlation. To reduce the complexity of the exact BEP evaluation, we furthermore provide an approximate multivariate Gaussian assumption (MGA)-based method which entails a low complexity for BEP evaluation. Ideal and approximate linear minimum mean-squared error diversity receivers for correlated Rician-fading channels are proposed. Numerical results show that the phases of the line-of-sight (LOS) components of the desired user significantly affect the receiver performance over correlated multipath Rician channels, and this may be exploited to improve performance. Also, when the LOS components are affected by a significant Doppler shift, automatic frequency control is very useful in improving the receiver performance.  相似文献   

13.
The performance of a two hop amplify-and-forward relay system, where the source-relay and the relay-destination channels experience Rayleigh and Rician fading respectively, is investigated. We derive exact and lower bound expressions for the outage probability and average bit error probability, where the bounds become tight at high signal-to-noise ratios (SNR). Our results are verified through comparison with Monte Carlo simulations, where we also illustrate the positive impact of the Rician factor on the system performance.  相似文献   

14.
Bit Error Probability (BEP) provides a fundamental performance measure for wireless diversity systems. This paper presents two new exact BEP expressions for Maximal Ratio Combining (MRC) diversity systems. One BEP expression takes a closed form, while the other is derived by treating the squared-sum of Rayleigh random variables as an Erlang variable. Due to the fact that the extant bounds are loose and could not properly characterize the error performance of MRC diversity systems, this paper presents a very tight bound. The numerical analysis shows that the new derived BEP expressions coincide with the extant expressions, and that the new approximation tightly bounds the accurate BEP.  相似文献   

15.
No systematic procedure for tightly bounding the average capacity of multiple-input-multiple-output (MIMO) correlated Rician fading channels is available in the literature. In addition to the involvement of a highly nonlinear log-determinant operator in the conditional capacity expression, the difficulty arises from the complicated noncentral Wishart distribution of channel sample matrix. In this paper, we tackle the problem with arbitrary antenna correlation existing either at the transmitter or at the receiver, but allowing for the numbers of the transmit and receive antennas to be arbitrary. By introducing an exact determinant expansion and by finding an explicit expression for the general moment of the determinant of the channel sample matrix, we obtain a general upper bound for the average channel capacity. To obtain a general lower bound, we construct and prove a multivariate convex function with each of its variables being the log-determinant function of a complex noncentral Wishart-distributed matrix. We further show that the general bounds so obtained can be simplified to explicit expressions for Rician fading channels with arbitrary semicorrelation and a mean matrix of rank one. The new results are simple, easy to be used, and superior in tightness as evidenced by intensive numerical examples.  相似文献   

16.
A new approach is presented for analyzing the bit error probability (BEP) of square, multilevel, quadrature amplitude modulation over a nonselective Rayleigh fading channel, with imperfect channel estimation employing pilot-symbolassisted- modulation. It is much simpler and more powerful than those in the literature, and the average BEP is obtained by calculating the BEP for each individual bit. The results are given in simple, exact, closed-form expressions that do not require any numerical integration. These expressions show explicitly the behavior of the BEP as a function of various system parameters. Three channel estimation schemes are investigated. It is shown that existing channel estimation schemes using sinc interpolation and Gaussian interpolation can be improved.  相似文献   

17.
This letter focuses on the performance analysis of the decorrelating receiver in multipath Rician faded CDMA channels. M-ary QAM scheme is employed to improve the spectral efficiency. Approximate expressions are first derived for the two performance indexes: the average symbol error rate (SER) and the average bit error rate (BER) when the decorrelating-first receiver perfectly knows the channel information of the user of interest. To achieve desirable closed-form expressions of the SER and the BER, we exploit results in large system analysis and make assumptions of a high signal-to-interference ratio (SIR) and/or a small Rician K-factor. To measure the receiver performance in the practical scenario, we further derive expressions to approximate the average SER and BER of the decorrelating-first scheme with channel uncertainty. Simulation results demonstrate that the analytical results can also be employed to evaluate the performance of the combining-first receiver.  相似文献   

18.
We derive an upper bound on the bit-error probability (BEP) in limited-search detection over a finite interference channel. A unified channel model is presented; this includes finite-length intersymbol interference channels and multiuser CDMA channels as two special cases. We show that the BEP of the M-algorithm (MA) is bounded from above by the sum of three terms: an upper bound on the error probability of the Viterbi (1967) algorithm (VA) detection given by Forney Jr. (1972), and upper bounds on the error probabilities of two types of erroneous decision caused by the correct path loss event. We prove that error propagation (in terms of the mean recovery step number) is finite for all finite interference channels. The convergence and asymptotic behavior of the upper bounds are studied. The results show that, if a channel satisfies certain mild conditions, all series in the bounds are convergent. One of the key results is that, for any finite interference channel satisfying certain mild conditions. the asymptotic BEP of the MA is bounded by the same upper and lower bounds (which have the same asymptotical behavior) as those for the VA if the correct path loss probability is smaller than that of the VA. Furthermore, we extend the above results to near optimally decode long convolutional codes in a short packet format (about 200-300 bits). We present a nonsorting combined M/T algorithm and showed that the M/T algorithm with M>2( dfree/n) and T>(dfreeEb)/n can near-optimally decode the code. We also propose a hierarchical decoding algorithm (HDA) to further cut down the average decoding complexity. Numerical results show that the bounds are reasonably tight. The HDA can achieve a performance within about 0.8 dB of the sphere-packing lower bound for a packet error rate of 10-4 and a packet length below 200 bits, which is the best reported decoding performance so far for block sizes from 100 to 200 bits  相似文献   

19.
A characteristic function-based method is used to derive closed-form bit error probability (BEP) expressions for orthogonal frequency-division multiplexing (OFDM) systems in the presence of channel estimation error over frequency-selective Rayleigh fading channels and frequency-selective Ricean fading channels. Both single channel reception and diversity reception with maximal ratio combining (MRC) are examined. The BEP expressions are shown to be sums of several conditional probability functions which can be calculated by using proper complex Gaussian random variable theory and a characteristic function method. The closed-form BEP expressions can be used to accurately investigate the bit error rate performance degradation caused by channel estimation error under different wireless channel environment models. The performances of two interpolation methods, a sine interpolator with Hamming windowing and a Wiener interpolator, are compared.  相似文献   

20.
We present a fundamental lower bound to the mean-square error of estimators of the phase of a sine wave passed through a Rician-fading channel. Explicit expressions for the bound with Gaussian and Rayleigh channels are provided. The bound is derived by analyzing the performance of the Bayes minimum mean-square error phase estimator, and therefore represents the best performance attainable by physically realizable phase estimators over a Rician channel  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号