首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用正交试验方法研究了纳米碳管加入量、复合温度、搅拌时间等关键工艺参数对用铸造方法制备纳米碳管增强镁基复合材料过程的影响,并探讨了这些工艺参数对复合材料力学性能和显微组织的作用。试验结果表明,纳米碳管(CNTs)加入能明显细化复合材料的晶粒组织,提高了复合材料的抗拉强度和伸长率,且在所探讨的3个工艺参数中,CNTs对材料的力学性能影响最大,其含量约为1.0%时力学性能最好;其次是温度取较低(680℃)为好;搅拌时间在3min时,其综合性能较好。另外,给出了材料拉伸强度较好和伸长率较好的3个影响因素的最优组合。  相似文献   

2.
纳米碳管具有优异的力学、物理性能,被认为是一种理想的复合材料增强体.在介绍纳米碳管结构、性能和应用的基础上,主要总结与回顾了含纳米碳管镀层的制备方法(包括化学镀、电镀法)及复合镀层在高硬度、低摩擦因数和低磨损率、高耐磨性、高耐腐蚀性等性能方面的研究现状,并探讨了复合镀层的发展与应用前景.针对纳米碳管长径比大、反应活性低、表面曲率大导致易团聚、不易分散这一缺点,还介绍了常用的镀前表面改性等处理方法.  相似文献   

3.
粉末冶金法制备纳米碳管/铝复合材料的力学性能   总被引:1,自引:0,他引:1  
采用粉末冶金法制备纳米碳管/铝基复合材料,研究不同质量分数纳米碳管对复合材料力学性能的影响.通过X射线衍射仪(XRD)和扫描电镜(SEM)对复合材料及其断口进行分析.结果表明,纳米碳管能细化复合材料的晶粒组织,明显提高复合材料的硬度和抗拉强度.含质量2%纳米碳管复合材料的硬度和抗拉强度达到54HV和121.5MPa,分别比铝基体提高了约80%和28%.复合材料的断口形貌显示,纯铝的断裂方式为微孔聚集型韧性断裂,而2%CNT/Al复合材料具有微孔聚集型和解理型脆性断裂的混合特征.  相似文献   

4.
利用激光熔铸技术制备多壁纳米碳管增强铝基复合材料,并使用SEM、XRD对其熔铸成形性以及纳米碳管与基体金属界面结合行为进行观察和分析.结果表明,在单位面积激光能量为800×105J/m2时,纳米碳管增强铝基复合材料能够熔合而不破坏纳米碳管结构;在该复合材料中适量添加表面张力较低的金属Mg,可降低基体铝的表面张力,进而降低铝-纳米碳管的液固界面能,改善铝合金和纳米碳管的润湿性;当纳米碳管含量为5%(质量分数)时,并添加3%(质量分数)合金化元素Mg,激光熔铸的复合材料熔合性较好,铸块致密,在复合铸块的断口上能观察到增强体纳米碳管.  相似文献   

5.
声化学法制备Y2BaCuO5纳米晶及其机理研究   总被引:2,自引:0,他引:2  
以Y2O3,CuCl2和BaCl2等为起始原料,采用声化学方法制备了Y2BaCuOs纳米晶。研究了超声波功率对合成纳米Y2BaCuO5的结晶性能及合成活化能的影响。结果表明:在湿化学过程中施加超声辐射能明显降低合成YzBaCuO5的晶粒尺寸和合成活化能;超声功率从100w增加到300W,合成的纳米Y2BaCu05晶粒尺寸从50nm~60nm减小到20nm~30nm,其合成活化能由87.1kJ/mol降低到53.1kJ/mol。  相似文献   

6.
纳米Y2O3弥散强化Ni基合金激光熔覆层   总被引:1,自引:0,他引:1  
研究了纳米YO3对Ni基合金激光熔覆层显微组织、相结构和性能的影响。结果表明:加入纳米Y2O3的Ni基激光熔覆层出现大量细小、无方向性生长的等轴晶;熔覆层主相为γ-Ni,此外还有Cr23C6、Ni4.6Si2B和Ni17Y2等;加入1.5%纳米Y2O3的熔覆层显微硬度值大幅度提高,其耐磨性比纯Ni基提高5倍多。磨损机理由较为严重的粘着磨损转变为微动磨损。  相似文献   

7.
储凯  王艳  卢新江 《热加工工艺》2006,35(23):53-55
对比研究了等离子喷涂Y2O3稳定的纳米与微米ZrO2涂层的组织结构及性能。结果表明,两种涂层有不同的相结构;纳米ZrO2涂层组织更加细密,铺展性更好,气孔率较低;两种涂层硬度相近;纳米ZiO2涂层的热震性能明显高于微米ZiO2涂层。  相似文献   

8.
多壁纳米碳管/Cu基复合材料的摩擦磨损特性   总被引:31,自引:7,他引:24  
利用销-盘式磨损试验机研究了粉末冶金法制备的多壁纳米碳管/Cu基复合材料的稳态摩擦磨损行为,并用扫描电镜分析了复合材料的磨损形貌。结果表明:多壁纳米碳管/Cu基复合材料具有较小的摩擦系数,并随纳米碳管质量分数的增加而逐渐降低;由于复合材料中纳米碳管的增强和减摩作用,在低载荷和中等载荷作用下,随着纳米碳管质量分数的增加,复合材料的磨损率减小;而在高载荷作用下,由于发生表面开裂和片状层剥落,含纳米碳管质量分数高的复合材料的磨损率增高。  相似文献   

9.
电弧法制备纳米碳管的工艺研究   总被引:1,自引:0,他引:1  
研究了铁、钴、镍等不同金属及混合双金属催化剂对电弧法制备纳米碳管的促进作用,研究了石墨电极的形状、位置、尺寸对电弧稳定性及冷却效果的影响,在制备纳米碳管的过程中通入不同冷却介质,比较单介质和双介质的冷却作用和对电弧的稳定作用。对制成的样品使用硝酸氧化法和大气氧化法进行纯化,样品在透射电镜下进行了观察。结果表明,在较低电流和电压的条件下,使用双金属催化剂以及混合介质气体,纳米碳管的产率提高了50%-115%和75%。透射电镜观察表明,最长的纳米碳管长度在8μm以上,直径在10nm左右,管形较直,为单壁与多壁的混合物。  相似文献   

10.
以乙醇为分散剂和保护剂,采用反向化学共沉淀法,制备了Y2O3-ZrO2纳米晶。结果表明:所制备的纳米晶为说办晶系;Y2O3-ZrO2纳米晶呈球形,当焙烧温度为900℃时,粒予粒径约30nm,粒径分布均匀,无明显硬团聚体存在;Y2O3-ZrO2纳米晶为多晶结构:Y2O3-ZrO2的晶化温度为489.19℃;Y2O3-ZrO2纳米晶的相对密度随粒径增大而增大。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

18.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

19.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

20.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号