首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
崔衍刚  张锐  宁晓骏 《功能材料》2022,(7):7083-7087
以纳米CaCO3为增强材料,通过预聚体法制备了不同纳米CaCO3掺杂的聚氨酯复合材料,研究了纳米CaCO3改性聚氨酯复合材料的力学性能、微观形貌、磨损性能和热稳定性能。结果表明,纳米CaCO3的掺杂没有改变聚氨酯的结构,但改善了复合材料的微观形貌和整体的均匀性,提升了复合材料的力学性能、磨损性能和热稳定性。随着纳米CaCO3掺杂量的增加,改性聚氨酯复合材料的拉伸强度、断裂延伸率和残余量先升高后降低,磨损量先降低后升高。当纳米CaCO3的掺杂量为3%(质量分数)时,复合材料的拉伸强度、断裂延伸率和残余量达到了最大值,分别为33.7 MPa、510.2%和4.4%,磨损量最低为50.1 mg。综合分析可知,纳米CaCO3的最佳掺杂量为3%(质量分数)。  相似文献   

2.
师杰  沈子杨 《功能材料》2022,(6):6100-6105
以纳米TiO2为填料,通过调整纳米TiO2的掺杂比例(0,2%,4%和6%)(质量分数),制备出了不同掺量的纳米TiO2改性水泥基混凝土复合材料,对混凝土复合材料的力学性能、微观形貌和耐久性能等进行了分析。结果表明,随着纳米TiO2掺杂含量的增加,混凝土复合材料的抗压强度和抗折强度均呈现出先升高后降低的趋势,孔隙率和磨损量表现出先降低后略微升高的趋势。当纳米TiO2的掺杂含量为4%(质量分数)时,28 d抗压强度和抗折强度均达到最大值,分别为42.57和5.62 MPa,孔隙率最低为9.57%,磨损量最少为1.81 kg/m2,磨损降低率最大为42.54%。抗盐冻性测试表明,在经过7次冻融循环后,随着纳米TiO2掺杂含量的增加,次冻融循环后的质量损失率持续降低,抗盐冻性能得到显著改善。SEM分析可知,掺入适量纳米TiO2后,钙矾石的形貌有从针状向扁圆形转变的趋势,促进了凝胶的形成,提升了整体结构的致密性,从而提高...  相似文献   

3.
冯满 《功能材料》2022,53(5):5213-5217
以正硅酸乙酯(TEOS)为前驱体,无水乙醇和去离子水为溶剂,采用溶胶-凝胶法制备了SiO2气凝胶,再以不同含量(0,1%,3%和5%(质量分数))短切碳纤维为增强材料,在胶凝完成后,经过表面改性,采用常压干燥工艺,制备了碳纤维增强SiO2气凝胶复合材料。采用XRD、SEM、FT-IR和孔径测试等方法对制备所得复合材料的微观结构、形貌、孔径分布和导热性能进行了测试分析。结果表明,碳纤维增强SiO2气凝胶复合材料为典型的非晶态结构,属于毛细凝聚特征的介孔材料,碳纤维的掺杂并没有改变SiO2气凝胶的晶态结构;未掺杂碳纤维的SiO2气凝胶的颗粒相互堆搭,掺入碳纤维的SiO2气凝胶颗粒的孔隙明显减小,孔洞结构较为完整,碳纤维的掺入填充了大尺寸孔隙,有助于气凝胶孔径分布区间的收窄,当碳纤维的含量为3%(质量分数)时,颗粒分布最佳;随着碳纤维含量的增加,复合材料的导热系数呈现出先降低后升高的趋势,当碳纤维的含量为3%(质量分数)时,样品的导热系数最低为0.019 W/(...  相似文献   

4.
熔融混炼制备了4 种大分子相容剂改性的纳米CaCO3 / PP 复合材料, 用DSC 和WXRD 研究了复合材料中PP 的结晶与熔融行为。结果表明, 纳米CaCO3对PP 结晶存在异相成核作用, 并诱导PP 形成β晶。相容剂丙烯酸接枝聚丙烯( PP-g-AA) 和马来酸酐接枝聚丙烯( PP-g-MA) 也存在异相成核作用, 提高PP 结晶温度。PP-g-AA、PP-g-MA 和马来酸酐接枝乙烯2辛烯共聚物(POE-g-MA) 与纳米CaCO3存在异相成核协同作用, 进一步提高PP 的结晶和熔融温度, PP-g-MA 和POE-g-MA 还促使纳米CaCO3诱导PP 生成β晶。但马来酸酐接枝乙烯2醋酸乙烯酯共聚物( EVA-g-MA) 则阻碍纳米CaCO3对PP 的异相成核作用。实验结果表明纳米CaCO3 / PP 复合材料中PP 结晶的异相成核作用与纳米CaCO3 / PP 界面的相互作用有关, 而纳米CaCO3 / PP 界面的相互作用与相容剂的结构有关。   相似文献   

5.
纳米CaCO3/EPR/PP复合材料性能与结构研究   总被引:11,自引:3,他引:8       下载免费PDF全文
采用双辊混炼和挤出制样的方法制备了纳米CaCO3/EPR/PP复合材料。通过PCM、TEM及力学性能测试研究了复合材料的力学性能及EPR和CaCO3粒子的分散状况。在纳米CaCO3/EPR/PP复合体系中,纳米CaCO3粒子的加入,不但使冲击强度显著提高,而且使弯曲弹性模量显著提高。纳米CaCO3粒子的增韧机理在于纳米CaCO3粒子的加入使弹性体EPR的分散更加均匀,EPR颗粒的粒径变小,进而与纳米CaCO3粒子产生协同增韧的作用。   相似文献   

6.
李聪  谭明  王亚玲  李辉 《功能材料》2023,(5):5095-5100
半导体材料作为电子信息材料的一种,因具有较宽的禁带宽度和高的载流子迁移率成为了人们关注的热点材料之一。通过水热法制备了不同质量分数Ag掺杂(0,1%,3%,5%,7%)的MoS2复合材料,采用XRD、SEM、UV-Vis、FT-IR、Raman和催化性能分析等手段对Ag掺杂MoS2复合材料的晶体结构、微观形貌、光谱性能和催化性能进行了测试与表征。结果表明,水热法合成了单一相的六方晶系MoS2,Ag成功掺杂到了MoS2中。Ag掺杂的MoS2复合材料为纳米片堆积形成的圆球状结构,Ag掺杂增大了MoS2纳米球的直径,尺寸在300~350 nm之间。Ag的掺杂诱导了MoS2的晶型从2H-MoS2相结构向1T-MoS2相结构转变,1T-MoS2相结构的晶型含量增加。MoS2复合材料对于可见光和紫外光的吸收能力增强,5%(质量分数)Ag掺杂的MoS2...  相似文献   

7.
为了提升人体防护装备的轻便性和灵活性,以剪切增稠胶(STG)为基体,并用纳米CaCO3对其进行补强,制备了缓冲吸能性能优异的剪切增稠STG/CaCO3复合材料,研究了CaCO3含量和粒径对STG剪切增稠性能的影响。结果表明:添加CaCO3后复合材料的最大储能模量比未添加时增加455%;添加的CaCO3粒径越小,复合材料的剪切增稠性能越优异。通过落锤冲击实验表征了复合材料的抗冲击性能,CaCO3的填充可使复合材料在具有最小变形量的情况下吸收更多的冲击力。探究了STG剪切增稠和CaCO3补强的作用机理,指出剪切增稠现象是由交联键的形成和分子链的缠结作用产生的,CaCO3通过吸能阻裂,分散冲击力产生补强作用。  相似文献   

8.
为了加速模拟海洋潮差区环境对混凝土耐久性能的影响,掺入矿粉和纳米改性矿物掺合料,研究了氯盐干湿循环作用对混凝土抗氯离子侵蚀性能及微观结构的影响,并将干湿循环试验与常规浸泡试验进行了对比。结果发现,干湿循环作用粗化了混凝土试件表层孔结构,增大了孔径>50 nm的孔隙含量,显著提高了自由及总氯离子浓度;掺入纳米改性矿物掺合料能降低混凝土内部孔隙率,减少有害孔含量,提高混凝土内部氯离子结合能力;干湿循环60天后混凝土表层Ca(OH)2逐渐被消耗,生成了Friedel盐和CaCO3。   相似文献   

9.
以氧化石墨烯(GO)、纳米Fe3O4、钛酸四丁酯(TBOT)为原料,合成了磁性介孔TiO2/GO(Fe3O4@TiO2/GO)复合材料,用其处理浓度为10 mg·L-1的含U(Ⅵ)废水。研究了Fe3O4@TiO2/GO复合材料中GO含量、溶液初始pH值、Fe3O4@TiO2/GO复合材料投加量、反应时间、U(Ⅵ)初始浓度及共存离子对U(Ⅵ)吸附的影响。结果表明:在pH值为6、GO质量分数为60wt%、Fe3O4@TiO2/GO复合材料投加量为10 mg的条件下,Fe3O4@TiO2/GO复合材料对U(Ⅵ)的吸附效果最佳,较同等条件下磁性介孔Fe3O4@TiO2复合材料和GO的吸附量分别高了10.99 mg·g-1和1.91 mg·g-1。Fe3O4@TiO2/GO复合材料对U(Ⅵ)的吸附180 min即达到平衡,准二级动力学模型和Freundlich吸附等温模型能很好地描述其吸附过程。解吸实验表明,经5次吸附-解吸后,U(Ⅵ)的吸附率仍高达90.86%,说明Fe3O4@TiO2/GO复合材料具有较高的循环利用性能。   相似文献   

10.
采用NaOH溶液将块状多层石墨相氮化碳(B-g-C3N4)剥离成带负电的纳米片层石墨相氮化碳(g-C3N4),并与带正电(经聚二烯丙基二甲基氯化铵(PDDA)改性)的还原氧化石墨烯(RGO)通过静电自组装的方式,制得“面-面”定向结合的RGO-g-C3N4二维异质层状复合材料。Zeta电位研究表明,静电组装过程主要受电荷中和作用的主导,通过改变RGO和g-C3N4表面的Zeta电位可控制静电自组装材料的组成及形貌。拉曼光谱和XPS测试结果说明,RGO-g-C3N4复合材料具有g-C3N4和RGO共同的结构特征; SEM和TEM结果进一步说明,RGO和g-C3N4纳米片在垂直方向上“面对面”定向叠加结合,复合后仍为片层状结构,层厚度明显增加。RGO-g-C3N4复合材料的导热系数随RGO含量的增加而增大,RGO含量为24.4wt%时,其导热系数达到4.2 W/(mK),是相同质量分数简单物理混合RGO+g-C3N4复合材料导热系数(3.0 W/(mK))的1.4倍,由于RGO-g-C3N4复合材料形成有效导热链,使RGO-g-C3N4复合材料的导热系数高于简单物理混合RGO+g-C3N4复合材料的导热系数。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号