首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
董文举  孔令斌  康龙  冉奋 《材料导报》2018,32(17):2912-2919
随着可穿戴式电子设备的快速发展,各类柔性储能器件也相继出现。柔性超级电容器因其稳定性高、体积小、电化学性能优越等特点受到研究人员的广泛关注。开发一种工艺简单、电化学性能和柔性良好的电极材料对制备性能优越的柔性超级电容器具有重要意义。材料的选取、电极的制备及器件的微型化将是未来的主要研究方向。本文主要综述了柔性超级电容器电极材料的分类、具体的制备方法以及器件的主要构型,并探讨了柔性超级电容器电极材料及器件的主要发展方向和研究重点。  相似文献   

2.
作为一种介于传统电容器和电池之间的新型电化学储能器件,超级电容器的整体性能主要受限于电极材料。研究发现,具有赝电容特性的过渡金属氧化物因其多重氧化态、多金属离子特性和高理论比容量,在电化学储能相关领域备受关注。首先简要阐述了柔性超级电容器的结构及储能机理。然后,概述了以不同元数的过渡金属氧化物为主体构筑的"二元"和"三元"柔性复合电极材料。接着,总结了由复合电极材料组装成的柔性超级电容器在可穿戴电子设备和多功能柔性器件——储能智能窗(ESS窗)方面的应用。最后,提出了过渡金属氧化物基柔性超级电容器在实际应用中所面临的挑战及今后的主要研究方向。  相似文献   

3.
随着便携式和可穿戴电子产品的发展,人们对柔性储能设备的需求越来越迫切。常用的储能设备有锂离子电池、超级电容器等。与锂离子电池相比,超级电容器具有更快的充放电速度、更高的循环稳定性能和更大的比电容等优点。但传统的超级电容器在受到拉伸、压缩等外力作用时,存储功能难免下降甚至丧失。因此,可拉伸超级电容器引起了研究者们的关注。电极是可拉伸超级电容器的重要组成部分,人们通过制备性能优异的电极材料或设计能够抗压缩、拉伸、扭曲等高强度机械力的电极结构来提高电极的电化学性能和力学性能。碳纳米管、石墨烯、碳纤维和碳气凝胶等碳材料属于双电层电容器电极材料,它们虽然比表面积大、循环稳定性强,但仍存在低比电容、低能量密度等缺点。其中,石墨烯更是面临因堆叠团聚而导致的储能性能降低的问题。于是,人们在将碳材料与其他电极材料结合制备碳基可拉伸复合电极材料方面做了许多尝试。高比电容的赝电容电极材料、大比表面积的过渡金属硫化物或高导电性的金属纳米线,都已被发现能够与某些碳材料产生协同互补,形成的碳基复合电极在比电容、循环稳定性和力学性能方面相比单种碳电极材料有明显提高。本文在对比介绍用作可拉伸超级电容器的各种碳材料的优势与不足的基础上,综述了近年来广泛应用于可拉伸超级电容器的碳基复合电极材料的研究进展。  相似文献   

4.
正随着便携、可穿戴电子设备的发展,柔性的超级电容器得到越来越广泛的关注和研究,以适应不同应用领域的储能需求。在柔性超级电容器中,具有高容量、高充放电倍率性能的柔性电极材料的设计和制备至关重要。石墨烯和导电聚苯胺分别具有双电层电容和赝电容的储能特性,是两类最具代表性的超级电容器电极材料。通过在纳米  相似文献   

5.
近年来,随着可穿戴电子技术的出现,制作出质量轻、灵活性强的电子设备也越来越受到人们的重视,相应具有可穿戴功能的高电化学性能的储能设备也备受关注。其中,超级电容器具有循环寿命长、充放电速度快、功率密度高等优点,是一种很有前途的储能设备。因此,柔性超级电容器的设计和生产被认为是满足先进柔性电子设备需求的最有前途的策略之一。鉴于电极材料是影响超级电容器的性能和生产成本的关键因素,因此开发高性能和低成本的电极材料是超级电容器研究的重要内容。在众多研究的电极材料中,双金属化合物因具有较高的理论比电容、较低的成本,对环境相对友好,耐碱腐蚀等优势而引起研究人员的广泛关注。其中,金属硫化物中硫钴镍是一种典型的双金属硫化物。硫钴镍具有理论容量高、电负性较低、电化学活性高、资源丰富易得、无毒、易制备等特点,因此被广泛用于超级电容器的电极材料。硫钴镍虽然具有较高的理论容量,但目前仍面临以下几个严重问题:(1)硫钴镍导电性差,实际电化学比容量低于理论容量;(2)硫钴镍在充放电过程中存在严重的体积膨胀,使得电容器结构被破坏进而造成电容器循环性能的快速衰减。目前的解决办法一般是通过将硫钴镍与各种碳材料、金属氧化物及导电聚合物复合,改善材料的结构、形貌和导电性,以此提高材料的电化学性能。硫钴镍与金属氧化物、硫钴镍与碳材料复合的电极材料在制成超级电容器的电极极片时需要添加导电剂和粘结剂,这不仅增加了电极的成本,而且也使制作环节变得复杂,更重要的是活性物质的外露面积也会因为粘结剂的使用而减小。现在许多研究将导电活性物质直接生长在集流体上形成自支撑结构,这种结构形式既简化了超级电容器电极的制作流程,又提高了电容器的电化学性能。本研究以Ti片为基底,采用分步水热法先在Ti片表面生长TiO_2纳米带阵列,然后在其上包覆生长NiCo_2S_4纳米片,得到NiCo_2S_4纳米片包覆TiO_2纳米带的核/壳阵列结构。将TiO_2@NiCo_2S_4作为超级电容器无粘结剂和导电剂的电极。三电极测试结果表明:1 A·g~(-1)时TiO_2@NiCo_2S_4电极的比电容达到1 300 F·g~(-1)。此外,将煤基多孔碳(CPC)作为负极,TiO_2@NiCo_2S_4作为正极,组装成了TiO_2@NiCo_2S_4//煤基多孔碳(CPC)不对称超级电容器(ASC)。电化学测试结果表明:TiO_2@NiCo_2S_4//CPC不仅具有较高的能量密度和功率密度(在400 W·kg~(-1)时为41.6 Wh·kg~(-1)),而且具有良好的循环稳定性(在4 A·g~(-1)下循环5 000次后,电容保持率大于80%)。这是由于采用多级阵列式结构的复合电极具有以下优势:(1)比表面积大,增大了活性物质和电解液的接触面积;(2)孔道丰富,减少了电解液离子迁移的距离;(3)避免了使用传统电极制作过程中导电剂和粘结剂,减少了生产成本、缩短了加工时间。这种交织的三维(3D)网络结构和柔性衬底的设计为获得高性能柔性衬底电极材料提供了新方法。  相似文献   

6.
超级电容器复合电极材料的研究进展   总被引:1,自引:0,他引:1  
超级电容器作为一种新型的储能元件,具有高功率密度和高循环寿命等优点,在许多领域特别是混合电动汽车领域具有广阔的应用前景.而电极材料是决定超级电容器性能的关键因素之一,高性能电极材料的合成和优化是目前超级电容器研究的重点.综述了超级电容器的储能原理、超级电容器复合电极材料的制备、性能、以及发展方向.  相似文献   

7.
超级电容器电极材料的研究现状与展望   总被引:2,自引:2,他引:0  
超级电容器是一种介于传统电容器与电池之间的新型储能元件,具有广阔的应用前景和巨大的经济价值.电极材料是决定超级电容器性能的关键因素,因而备受关注.主要论述了目前应用于超级电容器的多孔炭材料、金属氧化物及导电聚合物等电极材料的研究进展,探讨了电极材料今后的发展方向和研究重点,并指出大力开发复合电极材料是改善超级电容器性能的有效途径.  相似文献   

8.
超级电容器是一种具有优异电化学性能的新型储能装置,文章介绍了超级电容器的储能机理和优点,论述了碳基材料、金属氧化物材料及导电聚合物材料的研究进展和作为超级电容器电极材料的要求,对未来的电极材料的研究方向作出了展望。  相似文献   

9.
随着制造技术的飞速发展,便携式电子设备正朝着柔性化、轻质化、微型化及智能化方向发展,能够弯曲、折叠、扭曲、拉伸等协调变形的柔性电子设备应运而生。作为柔性电子设备的关键部件,储能器件的设计成为柔性电子实际应用必须攻克的难题。传统储能器件是刚性的,难以与柔性电子设备相适配,在变形时易造成电极材料与集流体分离,严重影响了电化学性能,甚至造成短路,产生重大的安全隐患。基于此,开发新型柔性储能器件,如柔性锂离子电池、柔性锂硫电池、柔性锂金属电池、柔性超级电容器等,已成为当今学术界和产业界研究的热点。近年来,基于本征柔性材料组装以及刚性材料柔性化设计两种方式获得的柔性储能器件取得了很大进展。金属纤维(如铝、铜)、聚合物纤维(如聚吡咯、聚苯胺)和碳基材料(如碳纳米纤维、碳纳米管、石墨烯及其复合材料)等因具有本征柔性的特征,在柔性储能器件中扮演着重要角色。其他诸如钴酸锂、钛酸锂等无机刚性材料的脆性较大,需通过合理的结构设计实现柔性。此外,柔性储能系统还需具备高容量、高效率、轻薄、安全等综合性能来满足实际的应用需求。本综述围绕本征和非本征柔性储能器件,探讨材料微观结构与器件宏观性能的构效关系,重点阐述各类柔性电极材料的制备方法、力学性能和电化学性能,并对未来柔性储能器件发展、电极材料设计面临的挑战提出了一些见解。  相似文献   

10.
生物质基碳材料具有可再生性和灵活的微观结构可调性,作为高效、廉价的超级电容器电极材料受到越来越多的关注,但原生生物质衍生炭存在有低孔隙率、低比表面积和比电容不足等缺点。电极材料的比表面积、孔隙结构和导电性等都会影响超级电容器的储能性能,故如何制造具有高比电容、快速充放电且兼具一定柔性的电极材料成为了目前的研究重点。综述了超级电容器的类别、储能机理以及生物质基碳材料的制备方法和研究现状,分析了高质量负载电极的关键性能评价参数,并对其电化学性能影响因素进行了系统讨论,未来的发展趋势是将不同种类的储能器械集成复合型能源存储器械,以满足各领域需求。复合型的能源存储器械,大大提高了超级电容器的综合性能,因此研发高效、稳定的电能存储技术对于缓解能源短缺、减少环境污染和推动可持续发展具有重要的意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号