首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To study the determinants of early and late outcome after coronary artery bypass grafting (CABG) for evolving myocardial infarction. METHOD: 269 consecutive patients underwent isolated primary or repeat CABG from 1971 to 1992 for evolving myocardial infarction. By institutional policy, these were patients, strictly diagnosed, infarcting either in the cardiac cateterization laboratory, shortly after a previous CABG, or on cardiac intervention waiting lists. At operation, 125 patients were hemodynamically stable, 89 patients in cardiogenic shock 55 patients in cardiopulmonary resuscitation (CPR). Interval between infarct onset and surgical reperfusion ranged from 53 min to 15 h (median, 135 min; 90% between 75 and 360). An internal mammary artery graft (IMA) was used in 81 patients. Cross-sectional follow-up was 100% complete and multivariable analysis was conducted in the hazard function domain. RESULT: One-month, 1-year and 10-year survival was 86, 84 and 66%, respectively. The 1-year and 10-year survival, stratified by hemodynamic class, was respectively 98 and 77% for the stable patients, 77 and 60% for the patients in shock and 62 and 49% for those undergoing CPR. Shock and CPR were incremental risk factors for early but not late risk. Use of an IMA graft was not a risk factor early or late in either stable or unstable patients. CONCLUSION: CABG can be performed with acceptable early and long-term risk in selected patients with evolving myocardial infarction, whatever their hemodynamic state. Outcome as regards survival is neither adversely or advantageously affected by choice of bypassing conduit. An evolving myocardial infarction with stable hemodynamics carries a lesser risk than an unstable anginal state with changing ST-segment.  相似文献   

2.
Angiotensin II (Ang II) induces vascular smooth muscle cell (VSMC) growth by activating Gq-protein-coupled AT1 receptors, which leads to elevation of cytosolic Ca2+ ([Ca2+]i) and activation of protein kinase C (PKC) and mitogen-activated protein kinases. To assess the link between these Ang II-induced signaling events, we examined the effect of Ang II on the proline-rich tyrosine kinase (PYK2), previously found to be activated by a variety of stimuli that increase [Ca2+]i or activate PKC. PYK2 distribution was demonstrated in rat aortic tissue and in cultured VSMC by immunohistochemistry, revealing a cytosolic distribution distinct from smooth muscle alpha-actin, focal adhesion kinase, or paxillin. The involvement of PYK2 in Ang II signaling was measured by immunoprecipitation and immune complex kinase assays. Treatment of quiescent VSMC with Ang II resulted in a concentration- and time-dependent increase in PYK2 tyrosine phosphorylation and kinase activity in PYK2 immunoprecipitates. PYK2 phosphorylation was inhibited by AT1 receptor blockade and was attenuated by downregulation of PKC or the chelation of [Ca2+]i. Treatment with either phorbol ester or Ca2+ ionophore also increased PYK2 phosphorylation, suggesting that PKC activation and/or increased [Ca2+]i are both necessary and sufficient to activate PYK2. Activation of PYK2 by Ang II was also associated with increased PYK2-src complex formation, suggesting that PYK2 activation represents a potential link between Ang II-stimulated [Ca2+]i and PKC activation with downstream signaling events such as mitogen-activated protein kinase activation involved in the regulation of VSMC growth.  相似文献   

3.
Cholecystokinin (CCK) has recently been shown to activate the mitogen-activated protein kinase (MAPK) cascade (Ras-Raf-MAPK kinase-MAPK) in pancreatic acini. The mechanism by which the Gq protein-coupled CCK receptor activates Ras, however, is currently unknown. Growth factor receptors are known to activate Ras by means of adaptor proteins that bind to phosphotyrosine domains. We therefore compared the effects of CCK and epidermal growth factor (EGF) on Tyr phosphorylation of the adaptor proteins Shc and its association with Grb2 and the guanine nucleotide exchange factor SOS. Three major isoforms of Shc (p46, p52, p66) were detected in isolated rat pancreatic acini with p52 Shc being the predominant form. CCK and EGF increased tyrosyl phosphorylation of Shc (251 and 337% of control, respectively). CCK-stimulated tyrosyl phosphorylation of Shc as well as Shc-Grb2 complex formation was significant at 2.5 min, maximal at 5 min, and persisted for at least 30 min. Finally, SOS was found to be associated with Grb2 as assessed by probing of anti-Grb2 immunoprecipitates with anti-SOS. Since MAPK in pancreatic acini is activated via protein kinase C (PKC), we studied the effect of phorbol esters on Shc phosphorylation and found 12-O-tetradecanoylphorbol-13-acetate to be as potent as CCK. Furthermore, GF-109203X, a PKC inhibitor, abolished the effect of 12-O-tetradecanoylphorbol-13-acetate and also the effect of CCK but not the effect of EGF on Shc tyrosyl phosphorylation. CCK-induced tyrosyl phosphorylation of Shc was found to be phosphatidylinositol 3-kinase-independent, and CCK did not cause EGF receptor activation. These results suggest that formation of an Shc-Grb2-SOS complex via a PKC-dependent mechanism may provide the link between Gq protein-coupled CCK receptor stimulation and Ras activation in these cells.  相似文献   

4.
Mitogen-activated protein kinase (MAPK) is activated in response to both receptor tyrosine kinases and G-protein-coupled receptors. Recently, Gi-coupled receptors, such as the alpha 2A adrenergic receptor, were shown to mediate Ras-dependent MAPK activation via a pathway requiring G-protein beta gamma subunits (G beta gamma) and many of the same intermediates involved in receptor tyrosine kinase signaling. In contrast, Gq-coupled receptors, such as the M1 muscarinic acetylcholine receptor (M1AChR), activate MAPK via a pathway that is Ras-independent but requires the activity of protein kinase C (PKC). Here we show that, in Chinese hamster ovary cells, the M1AChR and platelet-activating factor receptor (PAFR) mediate MAPK activation via the alpha-subunit of the G(o) protein. G(o)-mediated MAPK activation was sensitive to treatment with pertussis toxin but insensitive to inhibition by a G beta gamma-sequestering peptide (beta ARK1ct). M1AChR and PAFR catalyzed G(o) alpha-subunit GTP exchange, and MAPK activation could be partially rescued by a pertussis toxin-insensitive mutant of G(o) alpha but not by similar mutants of Gi. G(o)-mediated MAPK activation was insensitive to inhibition by a dominant negative mutant of Ras (N17Ras) but was completely blocked by cellular depletion of PKC. Thus, M1AChR and PAFR, which have previously been shown to couple to Gq, are also coupled to G(o) to activate a novel PKC-dependent mitogenic signaling pathway.  相似文献   

5.
OBJECTIVE: To examine the role of atrial natriuretic peptide (ANP) and cyclic GMP in the regulation of angiotensin converting enzyme (ACE) in cultured human endothelial cells. METHODS: Cultured endothelial cells from human umbilical veins (HUVEC) were treated with ANP (0.3-30 nM), 8-Br-cGMP (1-100 microM), Rp-8-Br-PET-cGMPS (1 microM), or the phosphodiesterase inhibitors, zaprinast (10-100 microM), dipyridamole (1-10 microM), or isobutyl methyl xanthine (IBMX, 0.1-0.5 mM). ACE amounts were measured by inhibitor binding assay and cellular cGMP levels by radioimmunoassay. RESULTS: ANP caused a dose dependent increase in ACE measured in intact endothelial cell culture. The stimulatory effect of ANP was blocked by Rp-8-Br-PET-cGMPS, a protein kinase G inhibitor. The cyclic GMP analog, 8-Br-cGMP and the cyclic GMP specific phosphodiesterase inhibitor, zaprinast, both increased ACE. Increase of ACE was also caused by nonspecific phosphodiesterase inhibitors, dipyridamole and IBMX. Intracellular cGMP levels were shown to increase by ANP, and phosphodiesterase inhibitors. CONCLUSIONS: These data suggest that cGMP is an intracellular mediator regulating ACE and that ANP induced increase of ACE is mediated via a cGMP dependent mechanism.  相似文献   

6.
The traditional treatment of high-flow vascular malformations consists of selective embolization, surgical removal, or a combination of both. Recurrence of the lesion and bleeding control are still the main problems, and the result of treatment is sometimes disappointing. We suggest treatment of these lesions with surgical ligation of the distal major feeding arteries followed by intravascular injection of a sclerosing agent (3% tetradecyl sulfate), and surgical excision and reconstruction when indicated. We have found this to be an effective treatment regimen. We present 14 cases of high-flow vascular malformations of the head and neck area treated with this approach, of which 4 cases developed skin necrosis. Three of these 4 cases of skin necrosis were later treated with skin grafting and, in 1 case, an upper arm skin tube flap was used for nasal tip reconstruction. Three cases underwent delayed reconstruction using tissue expanders. From a symptomatic and aesthetic point of view, preliminary satisfactory results were obtained. We feel that this approach is a good option for treating difficult, high-flow vascular malformations.  相似文献   

7.
The present study was performed to characterize the possible involvement of cAMP synthesis and protein kinase C (PKC) activation in the DNA synthesis-stimulating effect of parathyroid hormone-related protein (PTHrP) in proximal tubule cells. We found that DNA synthesis was stimulated by 10 microM 8BrcAMP, and 1 microM Sp-cDBIMPS, two cAMP analogs, and also by 1 microM phorbol 12-myristate 13-acetate (PMA) and 100 microM 1,2-dioctanoyl-sn-glycerol, two PKC activators, and 10 nM [Cys23] human (h)PTHrP (24-35) amide in rabbit proximal tubule cells (PTC). Both Sp-cDBIMPS and PMA, at 1 microM, also increased DNA synthesis in SV40-immortalized mouse proximal tubule cells MCT. Human PTHrP (7-34) amide [PTHrP (7-34)] dose dependently stimulated DNA synthesis in a similar manner as [34Tyr]PTHrP (1-34) amide [PTHrP (1-34)], in PTC. PMA pre-treatment for 20 h, which downregulates PKC, completely blocked the effect induced by PTHrP (7-34), but not that of PTHrP (1-34), in the latter cells. In contrast, the same PMA pre-treatment abolished the DNA synthesis stimulation by PTHrP (1-34) and PTHrP (7-34) in MCT cells, which appear to have PTH receptors mainly coupled to phospholipase C and not adenylate cyclase. Our results indicate that the stimulatory effect of PTHrP on DNA synthesis in proximal tubule cells is mediated by a cAMP- and PKC-dependent mechanism.  相似文献   

8.
Incubation of cultured cortical astrocytes with tumor necrosis factor alpha (TNF alpha) led to a marked reduction of membrane potential. Here we report that this depolarization depends on activation of protein kinase C (PKC), since it could be blocked by the PKC antagonists staurosporine and H7 and it could be mimicked by direct activation of PKC using the phorbol ester phorbol 12-myristate 13 acetate (PMA). Analyses of whole cell currents revealed a reduction of inwardly rectifying K+ currents whereas K+ outward currents were not affected. We conclude that TNF alpha induces changes of basic electrophysiological properties of astrocytes which are similar to those induced by proliferation or an in vitro model of traumatic injury.  相似文献   

9.
Blood pressure increases were inhibited by feeding a diet containing sour milk fermented by a starter containing Lactobacillus helveticus and Saccharomyces cerevisiae to spontaneously hypertensive rats. In rats fed with the sour milk, the angiotensin I-converting enzyme activity of the aorta was significantly lower than that of rats fed with the control commercial diet.  相似文献   

10.
The intracellular signal transduction pathways utilized by the HIV-1-derived protein, Tat, in the activation of human central nervous system-derived endothelial cells (CNS-ECs) were examined using specific enzymatic assays. Tat induced an increase in interleukin 6 (IL-6) mRNA within 1 hr of treatment. This biological effect of Tat involved activation of both protein kinase C (PK-C) and cAMP-dependent protein kinase (PK-A) in CNS-ECs. Tat at 10 ng/ml induced a sharp, transient increase in membrane PK-C activity within 30 sec of incubation, and reached maximum levels at 2 min, declining to control values within 10 min. Tat also induced a sharp increase in intracellular cAMP levels and PK-A activity in these cells, with the PK-A activity reaching a maximum at 10 min and slowly declining to control values in 4 hr of incubation. Activation of PK-A was dependent on a Tat-induced increase in membrane PK-C activity as demonstrated by calphostin C (a PK-C inhibitor) abolishing this effect. Incubation of cells with the cyclooxygenase inhibitor indomethacin did not affect Tat-induced activation of PK-A, indicating that prostacyclins are not involved in this process. Tat-induced increase in IL-6 mRNA was abolished in the presence on PK-A inhibitor H-89, demonstrating that activation of PK-A is necessary and sufficient for the increase in IL-6 production by these cells. Both the Tat-induced increase in intracellular cAMP and IL-6 mRNA levels in CNS-ECs may play a role in altering the blood-brain barrier and thereby inducing pathology often observed in AIDS dementia.  相似文献   

11.
Post-transfusion graft-versus-host disease (PT-GVHD) is a fatal adverse effect of blood transfusion. In spite of its severity, there is no effective treatment at present for PT-GVHD. Previously, we reported that chloroquine (CH) inhibited the cytotoxicity of cytotoxic T-cell (CTL) clones and tumour necrosis factor beta (TNF beta) production by TNF beta-producing clones in vitro, both the clones being derived from peripheral blood lymphocytes (PBMCs) of PT-GVHD patients. To explore the possibility of utilizing CH for the treatment of PT-GVHD, we extended our investigation of the immunosuppressive effects of CH in vitro to PBMCs derived from healthy donors. Our results show that CH inhibits the mixed lymphocyte reaction (MLR) between allogeneic PBMCs, production of inflammatory cytokines such as TNF alpha, interleukin-1 beta (IL-1 beta) and interferon gamma (IFN gamma) in mixed lymphocyte culture and natural killer cell activity, and, further, reduces the number of alloreactive CTL precursors.  相似文献   

12.
13.
Tritium labelled (x=1.1 MBq/17.7 microg/kg) and unlabelled 8-iso-PGF2alpha (43 microg/kg) were administered intravenously to female rabbits and frequent blood and continuous urinary samples were collected up to 4 h. The total radioactivity was lost rapidly from the circulation. About 80% of the total radioactivity was found in urine within 4 h. The plasma half-life of 8-iso-PGF2alpha is found to be 1 min at the distribution phase. The terminal elimination phase half-life was about 4 min. At 1.5 min after administration 64%, 19% and 13% of the plasma radioactivity represented 8-iso-PGF2alpha, 15-keto-8-iso-PGF2alpha and beta-oxidised products, respectively. The values for 20-min plasma were 5%, 2%, and 88%. The radiochromatograms from 10 min-4 h urinary samples were dominated by more polar beta-oxidised products. Alpha-Tetranor-15-keto-13,14-dihydro-8-iso-PGF2alpha was identified as a major urinary metabolite.Thus, 8-iso-PGF2alpha metabolises in the rabbit mainly to several degraded polar metabolites through dehydrogenation at C-15, reduction of delta13-double bond and beta-oxidation, and excretes efficiently into the urine.  相似文献   

14.
15.
16.
Tumor vaccination with dendritic cells (DC) presenting tumor antigens to T cells is a promising approach in immunotherapy. The aim of this study was to enhance T cell stimulatory ability of human DC by retroviral expression of the interleukin-7 (IL-7) gene. IL-7 has been shown to provide a potent costimulatory signal for the proliferation of T cells and the generation of cytotoxic T cells (CTL). DC were generated from human peripheral blood mononuclear cells (PBMC). DC were analyzed by light- and electron-microscopy, immunophenotype (CD1a+, CD14-, CD80+, CD86+, HLA-DR+) and functional assays. According to these criteria, 75-85% of the cells were DC. The cells did not produce measurable amounts of IL-7 spontaneously nor did they express the IL-7 receptor. A retroviral IL-7 expression vector was constructed. Retroviral infection was performed with either the LXSN-hIL-7 vector of its variant LXSN. Using the LXSN-hIL-7 vector, IL-7 production of 2296 pg/10(6) cells/24 h could be achieved on average. Transduction of DC was confirmed by RT-PCR in a CD1a-enriched cell fraction. Transduction efficiency by a control virus coding for beta-galactosidase was about 30%. In autologous mixed lymphocyte reaction (MLR), IL-7 transduced DC augmented T cell proliferation by a factor of two compared with unmodified or mock-transfected DC, and in allogeneic MLR there was a 2.7-fold increase in T cell proliferation. The increase in T cell proliferation could be correlated to IL-7 secretion by DC. Dendritic cells that have been simultaneously peptide-loaded and gene-modified to secrete IL-7 are a potential tool to amplify activation of tumor-specific T cells.  相似文献   

17.
The purpose of this study was to determine whether exposure of chemically transformed golden Syrian hamster oral epidermoid carcinoma cell (HCPC-1) cultures to smokeless tobacco extract (STE) is associated with a decrease in specific angiotensin I-converting enzyme (ACE) activity and whether this decrease potentiates bradykinin-induced cell growth. We found that STE induced a significant concentration- and time-dependent decrease in ACE activity in cultured HCPC-1 cells (P < 0.05). STE alone had no significant effect on cell number. Bradykinin alone induced a slight, but significant, increase in cell number (P < 0.05). These effects were significantly potentiated by STE (P < 0.01). We conclude that STE potentiates bradykinin-induced HCPC-1 cell growth, in part by attenuating specific ACE activity in these cells.  相似文献   

18.
In glomerular endothelial cells, extracellular ATP stimulates a phospholipase C with subsequent hydrolysis of polyphosphoinositides and an increase in cytosolic free Ca2+ concentration ([Ca2+]i). Short-term (30 min) pretreatment of endothelial cells with 12-O-tetradecanoylphorbol 13-acetate (TPA), a potent activator of protein kinase C (PKC), decreases the ATP-stimulated phosphoinositide degradation and Ca2+ mobilization. However, this inhibition was lost after incubating the cells for four hours with TPA. Longer-term pretreatment (10 to 48 hr) even potentiated ATP-induced phosphoinositide breakdown and Ca2+ mobilization. In addition, pretreating the cells for 30 minutes with the specific PKC inhibitor Ro 31-8220 dose-dependently increased ATP-stimulated phosphoinositide hydrolysis, thus clearly indicating a regulatory role for PKC in the inositol lipid signaling pathway in glomerular endothelial cells. By using specific antibodies recognizing the different PKC isoenzymes, it is observed that glomerular endothelial cells express five isoenzymes: PKC-alpha, -delta, -epsilon, -zeta and -theta. No PKC-beta, -gamma, -eta and -mu isoenzymes were detected. On exposure to TPA, a complete depletion of PKC-alpha is observed within four hours. In contrast, PKC-epsilon was more resistant to phorbol ester, and even after 48 hours of TPA treatment, only 60% of PKC-epsilon was down-regulated. PKC-theta decreased very slowly from the cytosol (47% left after 24 hr of phorbol ester treatment) and translocated to the Triton X100-insoluble fraction. Moreover, PKC-delta and PKC-zeta were not significantly affected by 48 hours of phorbol ester incubation. Thus, only PKC-alpha is depleted with a kinetic that corresponds to the loss of feedback inhibition of ATP-stimulated phosphoinositide turnover. In the next step, [Ca2+]i changes were measured in single cells loaded with Fura-2 after microinjection of neutralizing PKC isoenzyme-specific antibodies. Injection of antibodies specific for PKC-alpha potently increased Ca2+ mobilization in response to ATP stimulation when compared to cells injected with buffer only or antibodies specific for PKC-epsilon. These results provide evidence that PKC-alpha mediates feedback inhibition of ATP-stimulated phosphoinositide hydrolysis in glomerular endothelial cells.  相似文献   

19.
Salmon calcitonin (5 micrograms/kg body wt) was administered in an elasmobranch, Dasyatis akajei, to investigate the effects upon plasma calcium and inorganic phosphate. The hormone produced hypocalcemia and hyperphosphatemia in the stingray. It is concluded that calcitonin may have a role in calcium homeostasis by a mechanism different from that on bones.  相似文献   

20.
The cell signaling docking protein p130cas became tyrosine-phosphorylated in SH-SY5Y human neuroblastoma cells during induced differentiation with 12-O-tetradecanoylphorbol-13-acetate (TPA) and serum or a combination of basic fibroblast growth factor (bFGF) and insulin-like growth factor-I (IGF-I). The differentiating cells develop a neuronal phenotype with neurites and growth cones and sustained activation of protein kinase C (PKC) and pp60c-src. The TPA-induced p130cas phosphorylation increased within 5 min of stimulation and persisted for at least 4 days, whereas bFGF/IGF-I-induced p130cas phosphorylation was biphasic. However, the increase in tyrosine phosphorylation of p130cas was not restricted to differentiation inducing stimuli. The phosphorylation was blocked by the specific PKC inhibitor GF 109203X, and transient transfection with active PKC-epsilon induced p130cas tyrosine phosphorylation. pp60c-src, known to directly phosphorylate p130cas in other cell systems, was not activated after stimulation with TPA or bFGF/IGF-I for up to 30 min, and the initial p130cas phosphorylation was resistant to the Src family kinase inhibitor herbimycin A. However, in long term stimulated cells, herbimycin A blocked the induced phosphorylation of p130cas. Also, overexpression of src induced phosphorylation of p130cas. p130cas protein and phosphorylated p130cas were present in growth cones isolated from differentiated SH-SY5Y cells. Inhibition of PKC activity in differentiating cells with GF 109203X leads to a rapid retraction of growth cone filopodia, and p130cas phosphorylation decreased transiently (within minutes). Growth cones isolated from these cells were virtually devoid of phosphorylated p130cas. These data suggest a function for p130cas as a PKC downstream target in SH-SY5Y cells and possibly also in their growth cones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号