首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过场发射扫描电镜(FE-SEM),对白、粉和紫3种颜色的淡水养殖珍珠的珍珠层微结构进行了较系统研究。结果表明,在白色、粉色及紫色3种色系的珍珠中,在沿珍珠的半径方向上,珍珠层板片的厚度是变化的,且离珍珠核心距离越远,文石板片的厚度逐渐变薄;在同一直径不同颜色的珍珠中,接近珍珠外表面区域内珍珠层文石板片的厚度及珍珠外表面"梯田式"结构形貌也存在明显的差异,且珍珠表面"梯田式"结构越致密,其近珍珠表面的文石板片的厚度就越薄。  相似文献   

2.
三角帆蚌珍珠质层结构和珍珠质涂层的研究   总被引:2,自引:0,他引:2  
利用扫描电镜和光学显微镜对三角帆蚌贝壳和珍珠的珍珠质层微观结构进行了分析研究, 发现贝壳的珍珠质层中存在异常的结构带, 主要有柱状珍珠质带, 针状晶体带以及棱柱状晶体带. 其中柱状珍珠质带中, 单片文石板片的厚度超过1μm, 是正常珍珠质中文石板片厚度的两倍. 而对正常珍珠的珍珠质层的大量观察却未发现类似的异常结构. 分析认为这可能是因为贝壳珍珠质的矿化微环境与珍珠的珍珠质矿化微环境不同导致的. 并利用圆柱形珍珠囊在钛金属牙种植体表面制备的珍珠质涂层具有沿整个圆周面均匀生长的特点.  相似文献   

3.
淡水三角帆蚌贝壳珍珠质的同步辐射XRD研究   总被引:2,自引:0,他引:2  
利用同步辐射XRD研究淡水三角帆蚌贝壳珍珠质的内应力和珍珠质中单个文石板片的微结构, 发现淡水三角帆蚌贝壳珍珠质中单个文石板片内存在晶内有机物, 且该晶内有机物导致珍珠质层中产生拉应力. 这一拉应力沿不同晶向呈现强烈的各向异性, 表明晶内有机物在文石板片内很可能以某一特定的方式排列. 同步辐射XRD图谱的线形分析进一步证实淡水三角帆蚌贝壳珍珠质中的晶内有机物吸附于文石板片的(002)晶面. 这些研究结果将促进珍珠质矿化及强韧化机制的研究, 为设计高性能无机-有机复合材料及培育珍珠提供科学的根据.  相似文献   

4.
双壳纲三角帆蚌贝壳的三维微结构及其化学组成研究   总被引:1,自引:0,他引:1  
严俊  方飚  张姗姗  胡仙超  张刚生 《材料导报》2013,27(16):108-112
通过场发射扫描电镜(FE-SEM)、傅里叶变换红外(FTIR)光谱、X射线粉晶衍射(XRD)对淡水三角帆蚌贝壳各壳层的微结构特征及化学组成进行较系统的对比研究。结果表明:在贝壳的垂直生长层方向,最外层的角质层可细化为外角质层与矿化区,其中在贝壳的不同区域中该角质层的厚度存在明显差异;棱柱层中的棱柱与外层的角质层及内层的珍珠层文石板片呈近垂直交接,棱柱层的厚度在贝壳的不同位置同样存在差异;首次发现珍珠层中文石板片的厚度从接近棱柱层一端至珍珠层内侧面逐渐变厚,该结论与前人的文献报道恰好相反。基于本研究的结论,推测贝壳中复合的微纳米结构与化学组成共同决定了软体动物贝壳优异的力学性能。  相似文献   

5.
天然生物材料的组织结构特征及其与性能间的关系研究对于材料的仿生设计有重要意义.本文利用扫描电镜原位观察了受拉伸载荷作用下珍珠层中裂纹的萌生及扩展方式,并结合SEM和TEM技术研究了贝壳珍珠层微观组织结构,探讨了裂纹扩展过程中的增韧机制.结果表明,珍珠层相邻片层凹凸镶嵌互补,多边形文石晶体是由纳米级颗粒构成的多晶体.裂纹偏转,有机物桥联,纤维拔出,小孔聚结等多种增韧机制在裂纹扩展过程中协同作用,都源自珍珠层独特的微观结构,并提出片层的球冠型结构是导致珍珠层具有超常韧性的机制之一.  相似文献   

6.
贝壳珍珠层的研究现状   总被引:5,自引:0,他引:5  
贝壳中的珍珠层是由占壳重95%的CaCO3晶体和占壳重仅5%的有机体构成的一种优异的天然纳米复合材料.对珍珠层的研究现状和最新进展进行了评述.重点介绍了珍珠层形成机制中的隔室说、矿物桥说、模板说和多模板二步成因假说等4种学说,及裂纹的偏转、纤维的拔出、有机质的桥连、矿物桥机制和凹凸镶嵌结构等5种增韧机理,简述了珍珠层的组成和微结构,指出了珍珠层研究中有待解决的问题.  相似文献   

7.
鲍鱼壳珍珠层无机文石片的层状微结构研究   总被引:1,自引:0,他引:1  
陈斌  吴新燕 《功能材料》2006,37(10):1631-1633
贝壳珍珠层是软体动物壳的最内层,经过若干世纪的自然进化,贝壳珍珠层形成了优良的微结构,并使贝壳具有了相当高的强度、刚度及断裂韧性.本文利用扫描电镜(SEM)观察了鲍鱼贝壳珍珠层的主要微结构特征,发现其是由层状的无机文石片和有机胶原蛋白质组成的生物陶瓷复合材料.根据发现的贝壳珍珠层层状微结构特征,建立贝壳珍珠层三维有限元模型,并用此模型分析了珍珠层的拉伸屈服极限与无机文石片拉伸屈服极限及其厚度的关系,研究表明珍珠层的屈服极限随无机文石片屈服极限的增加和无机文石片厚度的减小而增加.  相似文献   

8.
采用均匀共沉淀法,制备了纳米片状Zn2Al-LDHs、花状结构ZnMgxAl-LDHs(x=1,2)以及微纳米结构Mg2Al-LDHs。利用XRD、SEM-EDX分析手段分别对产物的尺寸、结构和形貌进行了表征,并研究了组成变化对类水滑石结构形貌等生长调控作用。结果表明,所得含锌LDHs均具有较高的结晶度,其中Zn2Al-LDHs为多层板片状颗粒,晶体生长复合face-face片层团聚机理;ZnMgAl-LDHs为单层板片状颗粒,所得ZnMg2AlLDHs为双层板片状颗粒。镁离子含量是含锌水滑石结晶度及晶面生长方向的关键调控因素,随着镁离子含量的提高,含锌LDHs由face-face片层团聚为主向face-edge片层团聚现象过渡。Mg2Al-LDHs为花瓣状纳米片包覆颗粒晶,晶体生长复合face-edge片层团聚机理。  相似文献   

9.
模仿珍珠层结构, 采用蒸发诱导自组装的方法, 在石英片表面制备了聚三缩丙二醇双丙烯酸酯( PTPG-DA) / SiO2 纳米复合薄膜, 采用FT-IR、XRD 和TEM 等分析技术对薄膜结构进行了表征, 测试了其摩擦力学行为, 并初步讨论了纳米复合薄膜的形成机理。结果表明, 所制备的薄膜具有有机/ 无机有序交替的层状纳米复合结构, 其聚合前的层间距为2. 65 nm , 聚合后的层间距为2. 35 nm。聚合后的纳米复合薄膜具有较好的减摩性能。   相似文献   

10.
目的研究石墨烯/银纳米粒子(AgNP/G)复合抗菌材料简单快捷的制备方法。方法在碱性环境下采用原位还原法制备AgNP/G纳米复合材料。利用X射线衍射、红外、紫外和透射电镜等技术对AgNP/G复合材料的结构及形貌进行表征,探讨其形成机理,并通过平板计数法来观察AgNP/G复合材料的抗菌性能。结果所制备的AgNP/G复合材料中,形成的纳米银尺寸较小(15 nm)、粒径均一,在石墨烯片层上分布均匀。当AgNP/G的抗菌质量浓度为20μg/m L时,抗菌率达到98.7%。结论碱的存在能加速银纳米粒子在石墨烯片层上的形成,得到的AgNP/G复合材料抗菌性能优异。  相似文献   

11.
通过氧化和超声波分散制备了氧化石墨烯(GO)纳米片层分散体系,研究了GO纳米片层对水泥基复合材料的增韧效果及作用机制。用EDS、FTIR、XRD、SEM和AFM对GO纳米片层的结构进行了表征。研究结果表明:所得GO含氧量为32.3wt%,GO纳米片层的厚度为6 nm左右,在GO片层表面含有羟基、羧基和磺酸基等活性基团。水泥基复合材料的SEM形貌及力学性能测定结果表明:当GO掺量为0.03wt%时,GO能够使水泥水化产物形成花朵状晶体,并使水泥基复合材料的拉伸强度、抗折强度和压缩强度比对照样品分别提高了65.5%、60.7%和38.9%。提出了GO纳米片层对水泥水化产物的模板调控机制,揭示了花状晶体的形成过程。  相似文献   

12.
天然生物经历了亿万年的不断进化,已经形成了近乎完美的结构。天然生物材料结构的研究是仿生研究的基础,本文以三角帆蚌贝壳为研究对象,利用SEM和AFM,描述了三角帆蚌贝壳的微结构特征,包括其角质层、棱柱层、珍珠层及界面和晶带的形貌,揭示文石晶片及各层间的尺寸变化规律。研究表明:角质层内部分布大量裂纹,珍珠层与棱柱层无明显过渡界面,珍珠层内发现条状晶带结构缺陷;贝壳壳体和珍珠层厚度随0生长线向外呈现先增大后减小的变化趋势,且单层文石晶片的厚度不均,最厚处可达最薄处的2倍多。对三角帆蚌贝壳的结构进行了深入研究,为其优异的力学性能提供了理论依据,为未来的仿生结构设计提供了新思路和新想法。   相似文献   

13.
源于自组装生长的分级纳米结构因新颖的属性而吸引了人们的广泛关注。采用等离子体辅助直流弧光放电技术,以FeAl合金以及N_2为反应源,一步实现AlN∶Fe纳米线/三维片层复合分级纳米结构的制备。通过X射线衍射(XRD)仪、扫描电子显微镜(SEM)、能量色散X射线电子谱仪(EDS)、高分辨透射电子显微镜(HRTEM)等对该分级结构的晶体结构、形貌、元素组成、微观结构进行了详细的分析,发现该复合分级纳米结构由一维AlN∶Fe纳米线上AlN∶Fe纳米颗粒原位自组装生长而成。对分级片层结构的生长机理进行研究,发现AlN∶Fe磁性纳米粒子的电偶极矩及其表面上积聚电荷协同促使纳米粒子自组装形成AlN∶Fe纳米片层结构。磁性测试表明,该复合分级纳米结构具有室温铁磁性,Fe~(3+)的3d能带中未被抵消的自发磁矩导致的自发极化是其磁性产生的主要原因。本工作为利用磁性纳米粒子自组装制备复杂的分级纳米结构系统提供了可行性。  相似文献   

14.
用质子化的2,4,6-三(二甲氨基甲基)苯酚(DMP-30)通过阳离子交换反应对原始粘土进行修饰,采用一种与新的制备方法——"湿粘土加入法"合成了环氧树脂/粘土纳米复合材料。透射电镜(TEM)观察显示,粘土片层以3-5片为聚集单元均匀、无规地分布在整个环氧树脂的基体中,呈现高度、无规剥离形态。利用X射线衍射(XRD)跟踪了粘土片层在复合材料制备过程各阶段的分散状况,初步阐明了粘土片层在环氧树脂中的剥离机理:粘土片层在固化反应之前已经实现了在环氧预聚体中的剥离。有机改性剂带有的亲水基团及能与环氧树脂反应的叔胺基对形成剥离结构纳米复合材料有决定性作用。  相似文献   

15.
顾留洋  王树林 《功能材料》2015,(3):3041-3044
首先通过溶胶-凝胶法在Si片基底上制备1层ZnO纳米薄膜,作为纳米棒的晶种层,然后利用金属浴沉积法在ZnO纳米薄膜基础上制备择优取向的ZnO纳米棒阵列,最后通过水热法二次成核结晶形成纳米片。研究证明,ZnO纳米棒阵列和纳米片均沿着c轴取向。在Cu2+抑制极性面生长的作用下,形成的ZnO纳米片结构均匀,分布面积广,单片ZnO纳米片的厚度约为8 nm,面积呈平方微米级,较大的有40μm2左右。ZnO纳米结构的生长取向对其物理化学性能具有重要影响。高度沿c轴取向的ZnO纳米棒有利于紫外光发射和激光器的发展,但极性面的缩小不利于光催化反应。  相似文献   

16.
杨会伟  路国运 《复合材料学报》2017,34(12):2756-2761
为了分析具有砌浆结构的层状复合材料的应变率效应,以珍珠层为研究对象,采用纳米压入法测试珍珠层力学性能,利用连续刚度测量法得到不同加载速率下材料的硬度值和弹性模量。利用扫描电子显微镜观察珍珠层不同方向的砌浆微结构形貌,并结合微观结构对比分析不同压入深度和不同应变率两种工况下,珍珠层表层与横断面方向的力学性能。结果表明:在相同加载条件下,珍珠层表层方向的弹性模量小于其横断面方向的弹性模量,而表层方向硬度值则大于横断面方向的硬度值;当应变率恒定时,珍珠层弹性模量与硬度随压入深度增加而增加,当压入深度达到750nm后,弹性模量不再随压入深度变化而变化;当压入深度恒定时,硬度值、弹性模量和弹性回复率均随着应变率的增加而变大。  相似文献   

17.
采用碳热还原ATO纳米颗粒的方法,通过控制系统参数,合成了ATO实心球和空心球,以及新奇的船形和四方框形结构,比较分析了ATO实心球和空心球的形成机理,讨论了新奇的船形和四方框形结构的形成原因;通过调整实验参数和载气组成生长了Sb_2O_3的分级结构、纳米棒、纳米棒阵列、纳米片,探讨了4种Sb_2O_3纳米结构的生长机理,对4种Sb_2O_3纳米结构进行了光致发光研究,探讨了不同纳米结构的发光机理。总之,该研究实现了同一系统多种纳米结构和组成的可控生长。  相似文献   

18.
采用水热法成功制备了棒状α-FeOOH/MoS_2纳米片复合催化剂。运用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、紫外可见漫反射光谱(UV-Vis)和荧光发射光谱(PL)对复合催化剂的结构和形貌进行了表征。结果表明:成功制备了长度为500nm左右的纳米棒状α-FeOOH,其与MoS_2纳米片形成良好的复合结构。以亚甲基蓝为模拟污染物,研究复合催化剂在可见光照射下的光催化特性。结果显示,棒状α-FeOOH/MoS_2纳米片复合催化剂在120min内对亚甲基蓝的降解率为98%,其降解动力学常数是纯α-FeOOH的3倍。根据活性基捕获实验结果,提出了α-FeOOH与MoS_2纳米片形成异质结的Z型光催化机理。  相似文献   

19.
碳基薄膜作为一种新型的固体润滑材料其结构设计与调控一直是研究的重点与热点。近年来,在利用物理气相沉积法制备金属-碳多元薄膜时发现原位自形成纳米多层结构的奇特现象,研究表明在薄膜中形成纳米多层结构,可以很好地从微观尺度上增强薄膜材料的机械与摩擦学性能,从而利用纳米多层结构的自形成特性使润滑材料实现强韧一体化及多环境适应性。主要综述了在碳基薄膜制备过程中,复合元素、制备技术和沉积参数3种主要的影响因素分别对自形成纳米多层结构薄膜的生长和微观结构的影响规律,探讨了薄膜中纳米多层结构的自形成机制,展望了碳基薄膜自形成纳米多层结构的发展前景。  相似文献   

20.
硬质薄膜的韧化正成为气相沉积硬质薄膜研究和应用的重点。纳米多层结构设计是实现硬质薄膜强韧化的有效方法。本文介绍了纳米多层薄膜组元和韧化机理,讨论了周期、调制周期比、微观结构等子层因素对强韧化的影响,以及耐磨损、耐冲蚀场合的应用现状、问题以及原因。微裂纹在多层界面间偏折是纳米多层结构韧化的主要机理,但纳米多层结构界面越多,其裂纹萌生源越多,如果界面韧性较差,纳米多层结构会很快发生层-层剥离而失效。因此,纳米多层薄膜的韧化效果决定于界面的质量,而不是数量。必须获得高质量的层间界面,从断裂力学角度考虑抑制微裂纹的扩展,才能发挥纳米多层结构薄膜的优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号