首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
采用循环伏安法制备聚苯胺(PAN)/聚砜(PSF)复合膜修饰电极,在其上电沉积铂粒子,制得载铂聚苯胺/聚砜复合膜修饰电极,用循环伏安法和交流阻抗法研究它对甲醇的电催化氧化行为。复合膜的化学组分用FTIR进行表征,复合膜内层载铂后的表面形态用SEM进行表征。结果表明,复合膜的内层(与工作电极接触的一面)是聚苯胺,外层(与溶液接触的一面)是聚砜,铂粒子在复合膜内层的多孔聚苯胺上均匀沉积,从而使载铂聚苯胺/聚砜复合膜修饰电极对甲醇有好的电催化氧化性能。  相似文献   

2.
在0.5mol·L-1硫酸介质中,采用循环伏安的电化学聚合方法,以50mv·s-1的扫描速度,在-0.1~0.9V范围内以碳纳米管/纳米TiO2(CNT/nanoTiO2)电极为基体聚合得到了聚苯胺(PAn)复合膜电极,用循环伏安法研究了CNT/nanoTiO2-PAn-Pt电极在0.5mol·L-1H2SO4溶液中的电化学行为以及对甲醇氧化的电催化行为。结果表明,CNT/nanoTiO2-PAn-Pt电极对甲醇的氧化具有很高的电催化活性,并同时存在PAn的协同催化作用。在Pt载量为0.56mg/cm2时,甲醇氧化峰电流达到152mA/cm2,随着Pt载量的增加,甲醇的氧化峰电流最高可达410mA/cm2。  相似文献   

3.
应用电化学方法制备了Pt/PAn/GC电极,优化了苯胺在玻碳电极上的聚合条件,并对其进行了表征.结果表明,铂微粒在聚苯胺膜电极上具有很高的分散度,电极具有很大的比表面积,Pt/PAn/GC电极对甲醇电氧化的催化活性明显高于Pt/GC电极和Pt电极,在该电极上甲醇正向扫描和反向扫描时的氧化峰电流为58.68mA/cm2和50.00mA/cm2,为Pt/GC电极的1.6倍和1.7倍,为Pt电极的3.0倍和3.1倍,从而有效地提高了铂的催化活性,并得到在玻碳电极上聚合苯胺的最佳条件为扫描速度50mV/s,扫描上限1.2V.  相似文献   

4.
刘法彬  袁正勇  张治民 《化学世界》2007,48(2):86-88,80
研究了聚苯胺/聚乙烯磺酸盐(PAn/PVS)复合修饰电极的制备及其在中性缓冲溶液中对抗坏血酸(AH2)的电催化性能.结果表明,该复合修饰电极对抗坏血酸具有良好的电催化作用,其催化氧化峰电位为80 mV,催化氧化的温度系数为2.62%/℃.在浓度为1.0×10-6~5.0×10-3 mol/L范围内,催化电流与抗坏血酸的浓度具有良好的线性关系.  相似文献   

5.
将电聚合的聚苯胺 (PAN)膜电极置于c(NiSO4 ) =2 5mol/L的溶液中浸泡 2 0min得到嵌入Ni2 的PAN Ni2 电极 ,该电极在KOH溶液中的循环伏安曲线于 0 30 7V/0 2 30V处有一对明显的氧化还原电流峰 ,表明Ni2 离子已嵌入PAN膜电极。PAN Ni2 电极对碱性介质中甲醇的氧化具有明显的电催化活性。  相似文献   

6.
聚铝试剂膜修饰电极的制备及其电催化性能研究   总被引:2,自引:0,他引:2  
刘惠仙 《湖北化工》1999,16(4):21-22
铝试剂能在玻碳电极表面电聚合成膜,该膜能电催化氧化抗坏血酸、亚硝酸根。催化峰电流与其浓度均成良好的线性关系,该聚合膜修饰电极具有良好的稳定性,具有分析应用的意义。  相似文献   

7.
用循环伏安法在玻碳电极上电聚合导电高分子聚苯胺用于附载Pt,提高了Pt的分散度。发现甲醇在Pt/PAN/GC电极和Pt/GC电极上均能自发解离出强吸附中间体CO,证实聚苯胺膜的存在有利于提高电极对甲醇的电催化氧化活性,CO在Pt/PAN/GC电极上的氧化峰电流明显高于Pt/GC电极。通过比较甲醇的电催化氧化活性可知,Pt/PAN/GC电极催化氧化甲醇的峰电流为58.68mA/cm^2和50.00mA/cm^2,是Pt/GC电极氧化峰电流的1.6倍和1.7倍。  相似文献   

8.
采用化学原位一步还原法制得纳米铂修饰玻碳电极,并测试比较了其在酸性介质和碱性介质中对乙二醇氧化的电催化作用.结果表明,相比铂片电极,纳米铂修饰玻碳电极对乙二醇表现出更好的电催化性能,且该修饰电极在碱性介质中对乙二醇的催化作用更明显.  相似文献   

9.
利用循环伏安法电聚合导电高分子聚苯胺,并制备了Pt/PAn/GC电极和Pt/GC电极,优化了苯胺在玻碳电极上的聚合条件,用在H2SO4中的循环伏安曲线对其进行了表征,Pt/PAn/GC电极的制备提高了Pt的分散度,增加了催化剂Pt的利用率。实验结果表明Pt/PAn/GC电极对甲酸电氧化的催化活性明显高于Pt/GC电极和Pt电极,正向扫描和反向扫描时对应的氧化峰电位分别是0.68V、0.45V。峰电流为54.23mA/cm^2和84.23mA/cm^2,为Pt/GC电极的修饰电极1.7倍和1.9倍,为Pt片电极的3.8倍和4.9倍,有效地提高了铂微粒的催化活性,并得到聚合苯胺的最佳条件为扫描速度50mV/s、扫描上限1.2V。  相似文献   

10.
郝玉翠 《广东化工》2014,(19):246-248
采用电化学沉积法制备了铂微粒修饰玻碳电极(Pt/GCE)。通过伏安法研究了亚硫酸根在该电极上的电化学行为,并优化了实验参数,在此基础上建立了一种用微分脉冲伏安法直接测定亚硫酸根的方法。在pH为3的磷酸盐缓冲溶液(PBS)中,亚硫酸根的氧化峰电流与其浓度在1.0×10-5~1.0×10-3 mol/L的范围内呈良好的线性关系(r=0.9919),检测限为5.0×10-6 mol/L。  相似文献   

11.
采用电位阶跃法研究了铜基体上柠檬酸及其钾盐的缓冲溶液中锑的电结晶过程。其电流与时间关系图中出现两个电流峰 ,锑在Cu基上先形成一个单层 ,而后再在Sb单层上沉积。根据Scharifker方程将实验数据进行拟合 ,结果表明 :在低过电位下 ,属于连续成核机理 ;高过电位下 ,则表现为瞬间成核机理。  相似文献   

12.
氢钼青铜修饰铂电极对甲醇氧化的电催化作用   总被引:2,自引:0,他引:2  
利用循环伏安法研究了氢钼青铜在铂电极上的修饰作用和修饰铂电极在c(H2 SO4 ) =0 5mol/L溶液中对甲醇的催化作用。研究结果表明 :铂电极因钼酸盐的还原和钼青铜的氧化而得到修饰 ,低电位范围内修饰铂电极对甲醇的氧化有催化作用 ,催化氧化电流是未修饰电极上的1 6倍。酸性条件下 ,含高价态钼的钼青铜不稳定 ,会不断溶解对铂失去修饰作用 ,对甲醇的氧化效果与未修饰铂电极上的效果相同 ;而低电位时 ,钼青铜修饰铂电极则相对稳定  相似文献   

13.
运用电化学石英晶体微天平 (EQCM)研究了正丁醇在Pt、Pt/Sbad和Pt/Sad电极上的电氧化过程 ,结果表明正丁醇的氧化与电极表面氧化物种有着密切的关系。Pt电极表面Sb修饰原子能在较低的电位下吸附氧 ,催化正丁醇的氧化在较低电位下进行。相反 ,Pt电极表面S修饰原子的氧化会消耗表面氧化物种 ,从而抑制正丁醇的电氧化。  相似文献   

14.
通过电化学方法和原位FTIR反射光谱等技术 ,对自行研制的碳载Sb Pb Pt纳米材料电极 ,在有机电合成中的性能进行了研究。结果表明 :该电极对草酸的加氢还原表现出很高的电催化活性 ,草酸的还原电位为 - 0 40V ,与铅阴极相比 ,正移约 6 0 0mV ;电化学原位FTIR反射光谱研究结果指出 ,草酸的还原产物主要为乙醛酸。  相似文献   

15.
以十二烷基苯为原料,经硝化、加氢和N 烷化制得一种以双叔胺2,4 二(N,N 二己基)氨基十二烷基苯为主要成分的新萃取剂。其中硝化采用混酸硝化法,分两步进行,收率为92.6%;加氢采用5%(w)钯-炭催化剂,在55℃、1.2~0.5MPa下进行,收率为92.0%;N 烷化采用季铵盐相转移催化剂催化,在氢氧化钠水溶液中、回流温度下进行,最终产物中主产物含量不低于51.6%。在异辛醇为稀释剂、25℃及相比为1的萃取条件下,该萃取剂对硫酸的萃取率比三辛胺提高了56.9%。  相似文献   

16.
Sb-Pb-Pt/GC电极上二氧化碳还原过程研究   总被引:2,自引:0,他引:2  
《精细化工》2000,17(Z1):84-86
研制纳米薄膜合金电极 (Sb Pb Pt/GC电极 )用于二氧化碳电催化还原。运用循环伏安、电化学原位红外反射光谱和微电极技术对二氧化碳的电还原过程和还原产物进行研究。结果表明 :二氧化碳在此电极上的起始还原电位为 - 0 43V ,主要还原产物为有机羧酸。  相似文献   

17.
固体酸催化乙酸丁醇酯化反应的研究   总被引:35,自引:4,他引:35  
胡健平  储伟  邱发礼 《精细化工》2000,17(5):269-273
制备了SO42 - /Fe2 O3 ZrO2 SiO2 、SO42 - /Fe2 O3 SiO2 、SO42 - /ZrO2 SiO2 、SO42 - /TiO2 SiO2 等固体酸 ,用于催化乙酸 丁醇液相酯化反应 ,发现SO42 - /Fe2 O3 ZrO2 SiO2 固体酸具有良好的催化性能 ,其乙酸丁酯收率和酯化选择性可分别达到 93.2 6%和 96.0 0 % ,对SO42 - /Fe2 O3 ZrO2 SiO2 进行了XRD、BET和TGA表征 ,发现该类催化剂的成分主要以无定形状态存在 ,SO42 - 可能是该类催化剂的活性组分之一 ,催化剂失活的主要原因在于反应中SO4 2 - 的流失。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号