首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2022,48(7):9324-9329
(K,Na)NbO3 (KNN)-based ceramics have been proven to be formidable candidates among lead-free piezoelectric materials, yet poor reproducibility always hinders their progress. In the present study, the effects of low lithium substitution on the electrical properties and microstructure of (K0.5Na0.5)1-xLixNbO3 (KNLN) ceramics were investigated. All samples were synthesized by the sol-gel method. The Curie temperature (TC) of the ceramics shifted to higher temperature and gradually decreased the monoclinic-tetragonal (TM-T) phase transition. Li+ substitution had a prominent effect on the ferroelectric properties and improved the piezoelectric coefficient (d33) up to 181 pC/N. X-Ray Diffraction (XRD) studies and Field Emission Scanning Electron Microscopy (FESEM) images revealed an inevitable tetragonal tungsten bronze (TTB) secondary phase, which was formed during the preparation process. It was demonstrated that the volatilization of Li+ cations facilitated TTB growth. The coexistence of two different phase structures proved to enhance the KNN piezoelectric performance.  相似文献   

2.
(1?x)Na0.47K0.47Li0.06NbO3 (NKLN)–xAgSbO3 lead-free piezoelectric ceramics were prepared using a reaction sintering method. The effects of AgSbO3 doping on the structural and electrical properties of NKLN ceramics sintered at 1000–1040 °C were studied. The dopant affected densification, phase content, sintering temperature, microstructure and electrical properties. Variations in the relative intensity of X-ray diffraction peaks were consistent with Ag+ and Sb5+ ions substituting on the perovskite lattice to produce a change in the proportions of co-existing tetragonal and orthorhombic phases. Grain growth during secondary re-crystallization was also affected. The temperature of the orthorhombic–tetragonal (O–T) phase transition and the Curie temperature (TC) decreased as a result of AgSbO3 modifications. The dielectric and piezoelectric properties are enhanced for the composition near the orthorhombic–tetragonal polymorphotropic phase boundary. The 0.92Na0.47K0.47Li0.06NbO3–0.08AgSbO3 ceramics exhibited optimum electrical properties (d33=252 pC/N, εr=1450, tan δ=0.02, and TC=280 °C). These results reveal that (1?x)Na0.47K0.47Li0.06NbO3xAgSbO3 ceramics are promising materials for lead-free piezoelectric application.  相似文献   

3.
(K0.5Na0.5)NbO3 piezoelectric ceramics can be sintered at a temperature as low as 750 °C for 5 h by incorporating Li2CO3 + Bi2O3 + ZnO as the sintering aid, whereas the conventional sintering temperature is around 1,100 °C. The optimal “soft” piezoelectric properties are obtained for ceramics sintered at 850 °C for 5 h. The dielectric permittivity (ε), piezoelectric coefficient (d 33), electromechanical coupling (k p) and mechanical quality factors (Q m) of (K, Na)NbO3 modified with 5.5 wt% sintering aids are 1,436, 90 pC/N, 0.3 and 10, respectively. These values are similar to the values obtained for (K0.5Na0.5)NbO3 ceramics sintered above 1,100 °C. The underlying mechanism for abrupt change of dielectric permittivity is explained.  相似文献   

4.
《Ceramics International》2017,43(3):2927-2932
Lead-free (K0.49Na0.51)(Nb1−xSbx)O3 piezoelectric ceramics were prepared via the conventional sintering method and the effect of the substitution of Nb with Sb on the phase structure, microstructure and electrical properties of the prepared (K0.49Na0.51)(Nb1−xSbx)O3 ceramics was systematically investigated. The prepared ceramics exhibited a single-phase perovskite structure which changed from a standard orthorhombic structure to a pseudocubic structure as x was increased from 0 to 0.1. X-ray diffraction patterns and Raman spectra obtained for the prepared ceramics clearly revealed that the degree of structural symmetry increased with x. Substituting an appropriate amount of Sb5+ for Nb5+ was found to improve the microstructure and thereby enhance the piezoelectric/ferroelectric properties. Further increasing the Sb content resulted in a decrease of the average grain size and a deterioration of the performance. The peak values of the piezoelectric constant d33 (182 pC/N) and the electromechanical coupling coefficient kp (41%) were obtained for the ceramic with x=0.06.  相似文献   

5.
Li0.02(KxNa1?x)0.98NbO3(x = 0.35–0.55) ceramics were prepared using the conventional solid state sintering method. The thermal behaviors of Li-modified (KxNa1?x)NbO3 ceramics were investigated from ?30 to 150 °C, and the effect of Na/K ratio in (KxNa1?x)NbO3 ceramics on thermal behavior and electrical properties was also studied. In the case of Li0.02(KxNa1?x)0.98NbO3 ceramics with 0.5 wt.% ZnO, the transition temperature was sharply decreased because of a phase transition as the composition range of x was 0.425–0.475. From the results of the temperature dependence of piezoelectric properties, it is assumed that the Na-rich phase is less stable than the K-rich phase for temperature change.  相似文献   

6.
(0.974−x)(K0.5Na0.5)NbO3–0.026Bi0.5K0.5TiO3xSrZrO3 lead-free piezoelectric ceramics have been prepared by the conventional solid state sintering method. Systematic investigation on the microstructure, crystalline structures as well as electrical properties of the ceramics was carried out. With the addition of SrZrO3, the rhombohedral–orthorhombic phase transition temperature of the ceramics increases. Both the rhombohedral–orthorhombic and orthorhombic–tetragonal phase transitions of the ceramics were modified to be around room temperature when x~0.05, and as a result remarkably strong piezoelectricity has been obtained in 0.924(K0.5Na0.5)NbO3–0.026Bi0.5K0.5TiO3–0.05SrZrO3 ternary system, whose piezoelectric parameters were d33=324 pC/N and kp=41%.  相似文献   

7.
《Ceramics International》2019,45(14):17204-17209
The current work aims to compare the effect of systematic A-site and B-site substitutions on the piezoelectricity of Ka0.5Na0.5NbO3 (KNN)-based perovskite ceramics. The A-site elements was replaced by Li+ while Nb5+ was substituted by Sb5+ to form (K0.4675Na0.4675Li0.065)NbO3 (KNLN) and (K0.4675Na0.4675Li0.065)(Nb0.96Sb0.04)O3 (KNLNS) respectively. The ceramics were prepared using solid-state sintering method. The density of the ceramics steadily improved with the substitutions while the crystal structure evolved from monoclinic (in KNN) to the coexistence of monoclinic and tetragonal (in KNLN) and finally tetragonal in KNLNS. Distinct variations on size and morphology were recorded. Although density, crystal structure and morphology have minor effect on the Ec, they imposed considerable influences on Pr, d33 and kp. Despite relatively lower density, KNLN exhibited the highest Pr, d33 and kp at 9.80 μC/cm2,185 pC/N and 0.43 respectively signifying the positive enhancement brought by the co-existence of monoclinic and tetragonal crystal structures. More importantly, this work systematically proved that the co-existence of both structures signified the morphotropic phase boundary (MPB) composition as the primary factor for the enhancement of KNN piezoelectric properties.  相似文献   

8.
Lead-free (K0.4425Na0.52Li0.0375) (Nb0.9625−xSbxTa0.0375)O3 piezoelectric ceramics were prepared by the conventional sintering method. The effects of the Sb content on the phase structure, microstructure, dielectric, piezoelectric, and ferroelectric properties of the (K0.4425Na0.52Li0.0375) (Nb0.9625−xSbxTa0.0375)O3 ceramics were investigated. The much higher Pauling electronegativity of Sb compared with Nb makes the ceramics more covalent. By increasing x from 0.05 to 0.09, all samples exhibit a single perovskite structure with an orthorhombic phase over the whole compositional range, and the bands in the Raman scattering spectra shifted to lower frequency numbers. The grain growth of the ceramics was improved by substituting Sb5+ for Nb5+. Significantly, the (K0.4425Na0.52Li0.0375) (Nb0.8925Sb0.07Ta0.0375)O3 ceramics show the peak values of the piezoelectric coefficient (d33), electromechanical coupling coefficient (kp), and dielectric constant (?), which are 304 pC/N, 48% and 1909, respectively, owing to the densest microstructure of typical bimodal grain size distributions. Besides, the underlying mechanism for variations of the electrical properties due to Sb5+ substitution was explained in this work.  相似文献   

9.
In this work, three piezoelectric acoustic actuators are prepared by using multi-layer technology for lead-free (Na0.48-xK0.48-xLi0.04)Nb0.89-xTa0.05Sb0.06O3-xSrTiO3 (NKLNTS-xST) ceramics, x=0 and 0.007, and commercial lead-based ceramic. The phase and domain structure are also investigated by using the XRD patterns and TEM images of the NKLNTS-xST ceramics. The (Na0.473K0.473Li0.04Sr0.007)Nb0.883Ti0.007Ta0.05Sb0.06O3 piezoelectric acoustic actuator has the best sound pressure level and d33 value of 650 pCN?1. The response mechanisms suggest that the piezoelectric ceramic vibration amplitude was increased and the sound pressure level improved since the orthorhombic and tetragonal phases were found to coexist and the nanoscale domain increased for the (Na0.473K0.473Li0.04Sr0.007)Nb0.883Ti0.007Ta0.05Sb0.06O3 ceramic.  相似文献   

10.
《Ceramics International》2016,42(4):4648-4657
Lead-free (1−x)(K0.37Na0.63)NbO3-xCa(Sc0.5Nb0.5)O3 (x=0.050, 0.070, 0.090, 0.095 and 0.100) transparent ferroelectric ceramics have been fabricated by pressureless sintering procedure. Transmittance of 0.91(K0.37Na0.63)NbO3-0.09Ca(Sc0.5Nb0.5)O3 ceramics sintered in sealed alumina crucible was 15% higher than those sintered unsealed in air. By increasing the content of Ca(Sc0.5Nb0.5)O3, the phase structure of (K0.37Na0.63)NbO3 ceramics transformed from orthorhombic to tetragonal symmetry first and then to pseudo cubic symmetry. The 0.91(K0.37Na0.63)NbO3-0.09Ca(Sc0.5Nb0.5)O3 ceramics exhibited high density (98%), high transmittance (60%) in the near-IR region and relatively good electrical properties (εr=1914, tanδ=0.037, Tc=147 °C, Pr=6.88 μC/cm2, Ec=8.49 kV/cm). Meanwhile, the introduction of Ca(Sc0.5Nb0.5)O3 induced a composition fluctuation in the (K0.37Na0.63)NbO3 lattice and made the ceramics more relaxor-like, which would lead to a further reduction of light scattering. These results demonstrated that 0.91(K0.37Na0.63)NbO3-0.09Ca(Sc0.5Nb0.5)O3 could be promising lead-free transparent ferroelectric ceramics.  相似文献   

11.
This study investigated the phase transition behavior and electrical properties of (K0.5Na0.5)(Nb1-xZrx)O3 (KNN?100xZ) and (K0.5Na0.5)NbO3yBaZrO3 (KNN–100yBZ) lead–free piezoelectric ceramics. The phase transitions in crystal structures were compared in KNN ceramics between single Zr4+ doping and Ba2+Zr4+ co?doping. Piezoelectric properties such as the piezoelectric constant (d33) and electromechanical coupling factor (kp) are optimized for KNN?6BZ ceramics and were clarified via the polymorphic phase transition from the orthorhombic to pseudocubic phase. The fitted degree of diffuseness (γ) for a phase transition from the modified Curie–Weiss law indicated that KNN ceramics as ferroelectrics are gradually transformed through BaZrO3 modification. Accordingly, the enhanced strain properties at y = 0.08 consist of coexisting ferroelectric domains and polar nanoregions that are supported by ferroelectric–to–relaxor crossover in KNN?100BZ ceramics.  相似文献   

12.
《Ceramics International》2019,45(12):14675-14683
In this work, the relationships between the composition-driven phase boundary, ferroelectricity and strain properties of the (1-x)(K0.48Na0.52)(Nb1-ySby)O3-xBi0.5(Na0.82K0.18)0.5ZrO3 (abbreviated as (1-x)KNN1-ySy-xBNKZ) ceramics were investigated. A giant electric field-induced strain of 0.3% (d331 = 750 p.m./V) and a low hysteresis (16.4%) were obtained in the 0.97KNN0.98S0.02-0.03BNKZ ceramics. The giant strain is attributed to the enhanced piezoelectricity induced by the appearance of the O-T phase boundary and the electric-field-induced phase transition from the relaxor phase to the ferroelectric phase. Furthermore, the 0.97KNN0.98S0.02-0.03BNKZ ceramics exhibit good thermal stability in the temperature range from 25 °C to 150 °C. Hence, this work can promote the practical applications of KNN-based lead-free piezoelectric ceramics in highly sensitive and precise piezoelectric actuators.  相似文献   

13.
The longitudinal electrostrictive coefficient Q33 for perovskite-structured ferroelectric ceramics is usually between 0.01?0.04 m4/C2. However, an ultra-low Q33 of only 0.0047 m4/C2 was identified in the 0.9K0.5Na0.5NbO3-0.1SrTiO3 (KNN-ST) composition. Despite the fact that superior piezoelectricity has been observed in KNN-based ceramics, this value is obviously much smaller than the normal value, according to the general cognition and the thermodynamic relationship between piezoelectric coefficient d33 and Q33. Therefore, we synthesized (1?x)(K0.45Na0.49Li0.06)NbO3-xSrTiO3 (KNLN-ST) and studied phase structure, dielectric and ferroelectric properties systematically. Our findings show that the Q33 in the KNLN-ST system (0.012?0.027 m4/C2) is within the reasonable range for perovskite-structured ferroelectric ceramics. Furthermore, an ultra-high electrostrictive strain (>0.3%) with ultra-low hysteresis was achieved in the 0.8KNLN-0.2ST sample. This research not only clarifies the electrostrictive effect in KNN-based systems, but it also broadens the potential application field of KNN-based ceramics to electrostrictive actuators.  相似文献   

14.
It is highly significant to develop multifunctional optical materials to meet the huge demand of modern optics. Usually, it is difficult to realize multiple optical properties in one single material. In this study, we choose ferroelectric (KxNa1-x)NbO3:Pr3+ (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) as hosts, and the rare earth ions Pr3+ are doped in them. For the first time, the integration of photoluminescence, photochromism, luminescence modulation and thermoluminescence and has been achieved in the Pr3+ doped (KxNa1-x)NbO3:Pr3+ ferroelectric ceramics. Upon 337- or 448-nm light irradiation, all samples show strong red emissions centered at 610 nm. The photochromic reaction increases with the increasing K+ content in the (KxNa1-x)NbO3:Pr3+ ceramics. A strong photochromic reaction has been found in the (K0.5Na0.5)NbO3:Pr3+ ceramics. Accordingly, a large and reversible photoluminescence modulation (ΔRt = 50.71%) is achieved via altering 395-nm-light irradiation and 200 °C thermal stimulus. All the prepared ceramics show a visible thermoluminescence when stimulated at 200 °C. The mechanisms of luminescence modulation and thermoluminescence are discussed. Present study could provide a feasible paradigm to realize multiple optical properties in one single material.  相似文献   

15.
《Ceramics International》2022,48(14):19954-19962
Lead-free (1-x)(K0.5Na0.5)(Nb0.96Sb0.04)O3-x(Bi0.5Na0.5)(Zr0.8Ti0.2)O3 ceramics (abbreviated as (1-x)KNNS-xBNZT, x = 0, 0.01, 0.02, 0.03, 0.035 and 0.04) were synthesized by the solid-state method, and the dependence of phase evolution, microstructure, oxygen vacancy defect and electrical properties on compositions were carefully investigated. All ceramics had a pure perovskite structure and a dense microstructure. The phase transition temperatures (TR-O and TO-T) of the ceramics were adjusted by adding BNZT, and the rhombohedral-tetragonal (R-T) phase coexistence boundary was successfully constructed at room temperature when x = 0.03, the excellent piezoelectric performance (d33 ~ 323 pC/N, kp ~ 0.372) and high Curie temperature (TC ~ 276 °C) have been achieved at this time. The grain size of the ceramics showed a strong difference on x content, and the maximum relative density value of 95.42% was obtained. The domain structure characterized by PFM confirmed that the ceramics possess small-sized nano-domains and complex domains at x = 0.03, which are the origin of enhanced piezoelectric properties. Moreover, the oxygen vacancy defect that can pin the domain walls was increased with the addition of (Bi0.5Na0.5)(Zr0.8Ti0.2)O3. As a result, the doping with BNZT can significantly affect the phase structure and electrical properties of the ceramics, indicating that the (1-x)KNNS-xBNZT ceramics system with a R-T phase boundary is a promising lead-free piezoelectric material.  相似文献   

16.
《Ceramics International》2017,43(2):2100-2106
The piezoelectric properties of KNN lead-free piezoelectric ceramics could be greatly enhanced by forming multiphase coexistence. In this work, binary system (1-x)(K0.48Na0.52)(Nb0.95Sb0.05)O3-x(Bi0.5Na0.42Li0.08)0.9Sr0.1ZrO3 [(abbreviated as (1-x)KNNS-xBNLSZ] ceramics with rhombohedral-tetragonal (r-T) phase boundary was designed and synthesized using the conventional solid-state sintering method, and effects of BNLSZ contents on their micrograph, phase structure and electrical properties were also investigated. According to phase diagram from the results of temperature-dependent capacitance and dielectric constant, the ceramics exhibit the R-T phase coexistence in the composition range of 3.5%≤x<4.5%, and an enhanced dielectric, ferroelectric, and piezoelectric behavior was obtained at such a phase boundary zone. As a result, the ceramics with x=0.04 exhibit optimum electrical properties of d33~461 pC/N, kp~46%, tan δ~0.03, Pr~16.9 μC/cm2, and Ec ~9 kV/cm, together with a Curie temperature (TC) of ~228 °C. Such a good comprehensive performance obtained in this present work is due to the R-T phase transition and enhanced ɛrPr. It was believed that this ceramic system would promote the development of KNN-based lead-free ceramics.  相似文献   

17.
《Ceramics International》2022,48(7):9731-9738
Although both phase structure and fraction can affect the electrical properties of (K, Na)NbO3 based ceramics, few studies have examined the effects of lattice distortion on their electrical properties. In this work, we prepared (1-x)K0.48Na0.52NbO3-x(NaSbO3-(Bi0.45Sm0.05)Li0.5ZrO3) lead free piezoelectric ceramics with a multiphase coexistence region by regulating the doping component. The c/a ratio of the tetragonal phase greatly influenced the electric properties of the ceramics. The c/a ratio of the tetragonal phase decreases from 1.0102 to 1.0080 and subsequently increases to 1.0090. When the c/a of the tetragonal phase reaches its minimum value, the ceramic with x = 0.04 has the best piezoelectricity (d33~348 pC/N). Our research exhibits an alternative way to further understand the mechanism of electric property improvement of (K, Na)NbO3 based ceramics with multiphase coexistence.  相似文献   

18.
The article deals with finite element study of 1–3 composites made of piezoceramic fibers embedded in epoxy. The study focuses on evaluation of effective properties of piezoelectric fiber composites using representative volume element method. The physical properties deduced are further used for analyzing sensing and actuation characteristics of unimorph cantilever beam. K0.5Na0.5NbO3‐LiSbO3 (KNN‐LS), KNN‐LS doped with 1 wt% CaTiO3 [KNN‐LS‐CT (1 wt%)], K0.475Na0.475Li0.05(Nb0.92Ta0.05Sb0.03)O3 (KNLNTS), 0.885 (Bi0.5Na0.5)TiO3−0.05(Bi0.5K0.5)TiO3−0.015 (Bi0.5Li0.5) TiO3 −0.05 BaTiO3 (BNKLBT) and lead zirconate titanate (Pb [ZrxTi1−x] O3) (PZT) are embedded in epoxy matrix to form 1–3 piezocomposites. K0.475Na0.475Li0.05(Nb0.92Ta0.05 Sb0.03)O3 (KNLNTS) shows excellent performance than other composites under study. It can be concluded that KNLNTS (lead‐free piezoelectric material) is a potential candidate which can replace lead‐based PZT for smart structure applications. POLYM. COMPOS., 37:1895–1905, 2016. © 2015 Society of Plastics Engineers  相似文献   

19.
The effects of sintering temperature and the addition of CuO on the microstructure and piezoelectric properties of 0.95(K0.5Na0.5)NbO3-0.05Li(Nb0.5Sb0.5)O3 were investigated. The KNN-5LNS ceramics doped with CuO were well sintered even at 940 °C. A small amount of Cu2+ was incorporated into the KNN-5LNS matrix ceramics and XRD patterns suggested that the Cu2+ ion could enter the A or B site of the perovskite unit cell and replace the Nb5+ or Li+ simultaneously. The study also showed that the introduction of CuO effectively reduced the sintering temperature and improved the electrical properties of KNN-5LNS. The high piezoelectric properties of d33 = 263 pC/N, kp = 0.42, Qm = 143 and tan δ = 0.024 were obtained from the 0.4 mol% CuO doped KNN-5LNS ceramics sintered at 980 °C for 2 h.  相似文献   

20.
A new phase boundary with rhombohedral–orthorhombic and orthorhombic–tetragonal phase boundaries is designed in (K0.48Na0.52)NbO3 by adding Bi0.5(Na0.7K0.2Li0.1)0.5ZrO3 (BNKLZ), where Zr4+ and (BNKL)2+ are respectively used to improve the temperature of a rhombohedral phase and to decrease the temperature of an orthorhombic–tetragonal phase coexistence. These ceramics endure several continuous phase transitions with increasing BNKLZ content, i.e., an orthorhombic phase (0≤x<0.03), orthorhombic–tetragonal phases (x=0.03), orthorhombic–tetragonal and rhombohedral–orthorhombic (O–T and R–O) phase existence (0.03<x≤0.05), a rhombohedral phase (0.05<x≤0.07). The ceramics with O–T and R–O have a better piezoelectric behavior as compared with other phases because of more polarization states, enhanced εr and Pr, and a dense microstructure. Moreover, piezoelectric properties could be further optimized by modifying their sintering and poling temperatures. As a result, the construction of O–T and R–O phase coexistence benefits the improvement of piezoelectric properties in KNN-based ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号