首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermochemical interactions between Ca2Y8(SiO4)6O2 apatite, a potential environmental barrier coating (EBC) material, and a synthetic CMAS having the composition 23.3 CaO - 6.4 MgO - 3.1 Al2O3 - 62.5 SiO2 - 4.1 Na2O - 0.5 K2O - 0.04 Fe2O3 mole % were investigated. Pellets of apatite + CMAS powder and hot-pressed apatite disc-CMAS couples were annealed at 1200–1500 °C for 1–50 hours in air. Powder X-ray diffraction (XRD) was used to identify the phases present. Polished cross-sections of the heat treated pellets and diffusion couples were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), high angle annular dark field (HAADF) imaging, selected area electron diffraction (SAED), and energy dispersive X-ray spectroscopy (EDS). Ca3Y2(Si3O9)2 cyclosilicate, apatite, and amorphous phases were present in the samples heat treated at 1200 and 1300 °C, whereas no cyclosilicate was detected in samples annealed at 1400 and 1500 °C. A distinct cyclosilicate layer was observed at the apatite-CMAS interface in the diffusion couples heat treated at 1200 and 1300 °C. However, at 1400 and 1500 °C, due to its much lower viscosity, CMAS quickly infiltrated the apatite substrate through pores and along the grain boundaries and no cyclosilicate was observed; the apatite grains dissolved in molten CMAS followed by re-precipitation of apatite needles within an amorphous phase on cooling.  相似文献   

2.
The thermochemical behavior of EBC candidate materials yttrium disilicate (Y2Si2O7) and ytterbium disilicate (Yb2Si2O7) was evaluated with three calcium-magnesium-aluminosilicate (CMAS) glasses possessing CaO:SiO2 ratios relevant to gas turbine systems. Pellet mixtures of 50 mol% EBC powder to 50 mol% CMAS glass powder were heat treated at 1200°C, 1300°C, and 1400°C. The products of these interactions were evaluated using X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. Above glass melting temperatures, exposure of the disilicates primarily resulted in dissolution into the molten glass followed by precipitation of a Ca2RE8(SiO4)6O2 (RE = Yb3+, Y3+) apatite-type silicate and/or rare earth disilicate. In glasses with high CaO concentrations, apatite readily forms while the disilicate material is consumed by the reaction. As CaO content decreases, the disilicate phase becomes the main reaction product. Overall, reactions with yttrium disilicate favored more apatite crystallization than ytterbium disilicate. The viability of using these disilicates in various operating environments is discussed.  相似文献   

3.
《Ceramics International》2023,49(18):29948-29961
High temperature corrosion behavior of Ca2Gd8(SiO4)6O2 (CGdS) apatite has been investigated in the presence of molten calcium-magnesium-aluminosilicate (CMAS) glass having the composition 21.9 CaO - 4.3 MgO - 5.4 Al2O3 - 63.0 SiO2 - 4.3 Na2O - 0.8K2O - 0.1 Fe2O3 (weight %). CGdS apatite powder was prepared by solid state synthesis from constituent oxides. Pellets of CGdS apatite + CMAS mixed powder and CGdS-CMAS diffusion couples were annealed at 1200, 1300, 1400, and 1500 °C for 1 and 20 h in ambient atmosphere. Development of phases in heat treated specimens was characterized using various analytical techniques as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high angle annular dark field imaging, selected area electron diffraction and energy dispersive X-ray spectroscopy. In both pellets and diffusion couples, monoclinic cyclosilicate Ca3Gd2(Si3O9)2 formed from reaction of apatite with CaO in the CMAS melt only in samples heat treated at 1200 °C for 1 and 20 h or at 1300 °C for 1 h. Triclinic CaSiO3 and monoclinic diopside MgCaSi2O6 were also observed in samples annealed at 1200 and 1300 °C. At 1400 and 1500 °C, because of its low viscosity, CMAS infiltrated along the pores and grain boundaries of the apatite substrates in diffusion couples. Phase compositions predicted from thermochemical computation were in good agreement with those observed experimentally. Ca2Gd8(SiO4)6O2 apatite has the potential for being an effective T/EBC in circumventing the penetration of molten CMAS up to about 1300 °C but not at higher temperatures.  相似文献   

4.
《Ceramics International》2022,48(12):16499-16504
The thermochemical degradation of hafnium silicate (HfSiO4) was investigated with a molten calcium-magnesium-aluminosilicate (CMAS) glass relevant to gas turbine engine applications. Sintered HfSiO4 coupons were fabricated, within which wells were drilled and filled with CMAS glass powder at a loading of ~35 mg/cm2. Samples were heat treated at 1200°C, 1300°C, 1400°C, and 1500°C for 1 h, 10 h, and 50 h. At 1200°C and 1300°C, slow formation of a Ca2HfSi4O12 cyclosilicate phase was observed at the HfSiO4-CMAS interface. At 1300°C and higher, rapid infiltration of CMAS into the material along the grain boundaries was observed. Initial conjecture into CMAS degradation mechanisms of HfSiO4 are presented herein.  相似文献   

5.
With the increased demand for high operating temperature of gas turbine engines, corrosion by molten calcium-magnesium-alumino-silicate (CMAS) exhibits a significant challenge to the development of durable environmental barrier coatings (EBCs). EBC candidates, γ-Y2Si2O7, β-Yb2Si2O7, and β-Lu2Si2O7 were explored on their corrosion resistance to CMAS melts at 1300 °C and 1500 °C for 50 h. Interaction and degradation mechanisms were investigated and the corrosion behaviors showed different trends at high temperatures. At 1300 °C, RE2Si2O7 dissolves into CMAS melts and apatite phases reprecipitate forming a thick recession layer. However, when the temperature increases to 1500 °C, CMAS melts vigorously penetrate through the grain boundary of RE2Si2O7 and ‘blister’ cracks form throughout the samples. The reduced grain boundary stability at 1500 °C promotes the penetration of CMAS melts in RE2Si2O7. Grain boundary engineering is critically demanded to optimize CMAS corrosion at high temperatures.  相似文献   

6.
《Ceramics International》2023,49(16):26578-26588
CaO–MgO–Al2O3–SiO2 (CMAS) corrosion poses serious hidden dangers for the application of thermal barrier coatings (TBCs). In this study, LaMgAl11O19 (LMA) and GdPO4 were mixed at molar ratios of 2:1, 1:1 and 1:2 to prepare LMA/GdPO4 materials, and the CMAS corrosion behaviours of these materials were investigated at 1300°C–1500 °C for 20 h and 40 h. It was demonstrated that temperature was the main factor influencing the corrosion behaviours and products. The materials were damaged at 1300 °C by the crystallization of CMAS melts to form CaAl2Si2O8. In contrast, the materials were corroded by CMAS melts via the reaction between CMAS and GdPO4 at 1500 °C. These results indicate that the addition of GdPO4 to LMA can improve the resistance of the LMA material to CMAS corrosion.  相似文献   

7.
Environmental barrier coatings (EBCs) prevent the oxidation of ceramic matrix composites (CMC), which are used as components in gas turbines. However, EBCs deteriorate more rapidly in real environments, molten silicate deposits accelerate the deterioration of EBCs. In this study, high-temperature behavior sintered Gd2Si2O7 with calcia-magnesia-alumina-silica (CMAS) melt at 1400 °C for 0.5, 2, 12, 48, and 100 h was investigated. HT-XRD results showed that at 1300 °C, CMAS and Gd2Si2O7 chemically reacted to form Ca2Gd8(SiO4)6O2 (apatite). The reaction layer became thicker as the heat-treatment time increased, and the thickness of the reaction layer has increased following a parabolic curve. With the extension of the reaction time from 0.5 to 100 h, the thickness of the reaction layer increased from approximately 98 to 315 µm. It was confirmed that Ca2Gd8(SiO4)6O2 grew vertically on the Gd2Si2O7 surface. Vertical and horizontal cracks were found after reacting at 1400 °C for 100 h, but no interfacial delamination occurred in this study. In addition, the effects of CaO:SiO2 molar ratios, monosilicates (RE2SiO5) and disilicates (RE2Si2O7), heat-treatment time, and cation size were determined and compared with the results of previous studies (Gd2SiO5, Yb2SiO5, and Er2Si2O7).  相似文献   

8.
Rare earth (RE) disilicates are utilized in environmental barrier coatings to protect Si-based engine components from destructive reactions with water vapor and other combustion species. These coating materials, however, degrade when exposed to molten silicate deposits in the engine. Four RE-disilicates (RE2Si2O7, RE = Er, Dy, Gd, Nd) are analyzed herein in thermochemical interactions with glassy calcium-magnesium-aluminosilicate (CMAS) compositions at 1400°C. Crystalline reaction products included RE2Si2O7, SiO2, and a Ca2+yRE8+x(SiO4)6O2+3x/2+y apatite-type silicate. RE2Si2O7 formation was favored in interactions with CMAS having low CaO:SiO2 ratios. Increased reactivity was observed for higher CaO:SiO2 ratios in CMAS combined with larger RE3+ cation size, resulting in apatite formation of varying stoichiometry and changes in lattice parameters. The crystallization of SiO2 was dependent on both thermodynamic equilibrium at low CaO:SiO2 ratios and sequestration of silicate modifiers at higher CaO:SiO2 ratios, although residual amorphous content after CMAS exposure in both cases was still substantial.  相似文献   

9.
《Ceramics International》2020,46(3):2618-2623
Hot corrosion behavior of Yb2Si2O7 bulk exposed to NaVO3 molten salt was investigated at 1000–1500 °C for 2 h. Results showed that YbVO4 was produced on the bulk surface at 1000–1200 °C because of the acidity of the corrosion medium. The corrosion product of Yb2SiO5 was yielded at 1300–1500 °C due to the transformation of the corrosion medium from acidity to alkalinity. The content of YbVO4 in the products decreased as the temperature increased, while that of Yb2SiO5 increased with an increase in temperature. In this paper, various hot corrosion mechanisms of Yb2Si2O7 bulk exposed to NaVO3 molten salt are discussed based on the formation of YbVO4 and Yb2SiO5.  相似文献   

10.
Rare earth silicate environmental barrier coatings (EBCs) are state of the art for protecting SiC ceramic matrix composites (CMCs) against corrosive media. The interaction of four pure rare earth silicate EBC materials Yb2SiO5, Yb2Si2O7, Y2SiO5, Y2Si2O7 and three ytterbium silicate mixtures with molten calcium-magnesium-aluminosilicate (CMAS) were studied at high temperature (1400°C). The samples were characterized by SEM and XRD in order to evaluate the recession of the different materials after a reaction time of 8 hours. Additionally, the coefficient of thermal expansion (CTE) was determined to evaluate the suitability of Yb silicate mixtures as EBC materials for SiC CMCs. Results show that monosilicates exhibit a lower recession in contact with CMAS than their disilicate counterparts. The recession of the ytterbium silicates is far lower than the recession of the yttrium silicates under CMAS attack. Investigation of the ytterbium silicate mixtures exposes their superior resistance to CMAS, which is even higher than the resistance of the pure monosilicate. Also their decreased CTE suggests they will display better performance than the pure monosilicate.  相似文献   

11.
《Ceramics International》2021,47(22):31868-31876
Calcium-magnesium-alumina-silicate (CMAS) and molten salt corrosion pose great threats to thermal barrier coatings (TBCs), and recently, a coupling effect of CMAS and molten salt has been found to cause even severer corrosion to TBCs. In this study, the crystallization behavior of CMAS and CMAS+NaVO3 is investigated for potentially clarifying their corrosion mechanisms to TBCs. Results indicated that at 1000 °C and 1100 °C, CMAS was crystallized to form CaMgSi2O6, while at 1200 °C, the crystallization products were CaMgSi2O6, CaSiO3 and CaAl2Si2O8. The introduction of NaVO3 in CMAS reduced the crystallization ability, and as the NaVO3 content increased, glass crystallization occurred at a lower temperature, with crystallization products mainly consisting of CaAl2Si2O8 and CaMgSi2O6. At 1200 °C, CMAS+10 wt% NaVO3 was in a molten state without any crystallization, which suggested that NaVO3 addition in CMAS could reduce its melting point, indicating enhanced penetration ability in TBCs and thus increased corrosiveness.  相似文献   

12.
Using CaO, Y2O3, Al2O3, and SiO2 micron-powders as raw materials, CaO–Y2O3–Al2O3–SiO2 (CYAS) glass was prepared using water cooling method. The coefficient of thermal expansion (CTE) of CYAS glass was found to be 4.3 × 10?6/K, which was similar to that of SiCf/SiC composites. The glass transition temperature of CYAS glass was determined to be 723.1 °C. With the increase of temperature, CYAS glass powder exhibited crystallization and sintering behaviors. Below 1300 °C, yttrium disilicate, mullite and cristobalite crystals gradually precipitated out. However, above 1300 °C, the crystals started diminishing, eventually disappearing after heat treatment at 1400 °C. CYAS glass powder was used to join SiCf/SiC composites. The results showed that the joint gradually densified as brazing temperature increased, while the phase in the interlayer was consistent with that of glass powder heated at the same temperature. The holding time had little effect on phase composition of the joint, while longer holding time was more beneficial to the elimination of residual bubbles in the interlayer and promoted the infiltration of glass solder into SiCf/SiC composites. The joint brazed at 1400 °C/30 min was dense and defect-free with the highest shear strength of about 57.1 MPa.  相似文献   

13.
To improve the ability of rare-earth (RE) silicates to resist molten calcium–magnesium–aluminosilicate (CMAS) at high temperature, a novel high-entropy (4RE0.25)2Si2O7/(4RE0.25)2SiO5 (RE = Y, Yb, Er, and Sc) multiphase ceramic was prepared by a two-step process. During sintering, (4RE0.25)2SiO5 can react with SiO2 at the grain boundaries of (4RE0.25)2Si2O7, which can not only purify the grain boundary but also promote the growth of the original (4RE0.25)2Si2O7 grains, thereby significantly improving the ability to resist molten CMAS corrosion at high temperature. After corroding at 1500°C for 48 h, the reaction layer of the multiphase ceramic was only 55 μm thick. Our results confirm that the high-entropy RE silicate multiphase ceramics represent an effective way to improve the ability to resist molten CMAS corrosion at high temperature.  相似文献   

14.
Thermochemical stability and microstructural evolution of Yb2Si2O7 was studied in high-temperature high-velocity water vapor at temperatures between 1200–1400 °C. Two reactions were shown to occur in the steam environment: Yb2Si2O7 reaction to form Yb2SiO5, and further Yb2SiO5 reaction to form Yb2O3. Parabolic rates of both reactions were observed, and similar reaction enthalpies were determined for each reaction; 207 kJ/mol and 205 kJ/mol, respectively. Densification of the product phase Yb2SiO5 shut off pore connectivity for gas transport to the reaction interface at gas velocities exceeding 115?125 m/s and for temperatures of 1300 °C and 1400 °C, resulting in reduced reaction rates at higher velocities. Outward gas diffusion by a silicon hydroxide species is predicted to govern ytterbium silicate reactions with high temperature water vapor. Microstructure changes at high temperatures and velocities were shown to greatly impact the long-term stability of Yb2Si2O7.  相似文献   

15.
The effect is reported of seven inorganic oxide additives on both the formation mechanism and the densification of X-sialon prepared by a silicothermal process. The oxides were added to the starting mixture of halloysite clay, alumina and elemental silicon at a level of 1 wt% of the calculated final product, and fired in nitrogen at 1200–1500°C. The formation of X-sialon was monitored by thermal analysis, powder XRD and 27Al and 29Si solid state MAS NMR. The effects of the additives are temperature dependent, and influence the various stages of the reaction by differing degrees. The oxides which best promote the formation of crystalline X-sialon (Y2O3, CaO and MgO) are also those which facilitate the conversion of initially-formed Si3N4 to SiO2N2 and SiO3N units, the latter being particularly enhanced by Y2O3, Fe2O3 enhances the initial nitridation of Si but suppresses X-sialon formation by stabilising the preceding mullite phase. Densification is most enhanced by Y2O3, CaO and CeO2; MgO exerts its maximum effect on sintering at lower temperatures. The beneficial influence of MgO and Y2O3 on both X-sialon formation and sintering is due to the formation of liquid phases.  相似文献   

16.
In order to improve the oxidation resistance of carbon-carbon (C/C) composites at high temperature, different content of Y2O3 modified ZrSi2/SiC coating for C/C composites were prepared by pack cementation and supersonic atmosphere plasma spraying (SAPS). Microstructure observation and phase identification of the coatings were analyzed by SEM, XRD, DSC/TG and EDS. Experimental results shown that the coating with 10?wt% Y2O3 effectively protected C/C composites from oxidation at 1500?°C in air for 301?h with a mass loss of 0.13% and experienced 18 thermal shock times from room temperature (RT) to 1500?°C. First, Y2O3 could restrain the phase transition of ZrO2 to reduce the formation of thermal stresses of the coating; second, the random distribution of ZrO2 ceramic particles and the formation of ZrSiO4 enhanced the stability of the SiO2; third, the formation of Y2Si2O7 and Y2SiO5 could relieve the thermal mismatch between ZrSi2-Y2O3 outer layer and the inner layer.  相似文献   

17.
The Gd2SiO5 performed high-temperature corrosion behavior on calcium–magnesium– aluminosilicate (CMAS) for environmental barrier coatings (EBCs). The synthesized Gd2O3-SiO2 powder was prepared to fabricate a sintered Gd2SiO5 by spark plasma sintering (SPS) at 1400°C for 20 min. CMAS was sprinkled on the sintered Gd2SiO5 surface and exposed for 2, 12, and 48 h at 1400°C by isothermal heat treatment. The main corrosion factor is Ca, and Ca2Gd8(SiO4)6O2 phase is formed by reacting with Gd2SiO5. Extended morphology of Ca2Gd8(SiO4)6O2 particles observed in the reaction area become thicker as the heat treatment time increases as the CMAS is dissolved. According to the results of high-temperature X-ray diffraction (HT-XRD) and differential scanning calorimetry (DSC), CMAS melted at 1243°C or a higher temperature formed the reaction area. The Ca2Gd8(SiO4)6O2 phase was recrystallized and grown due to the reaction of Gd2SiO5 and Ca of the CMAS components.  相似文献   

18.
The current study reports on the improvement of mechanical properties of 3?mol% Y2O3 stabilized tetragonal ZrO2 (3Y-TZP) by introduction of tourmaline through ball milling and subsequent densification by pressureless sintering at 800, 1200, 1300, 1400?°C. Findings demonstrate that no matter which sintering temperature the 3Y-TZP ceramic containing 2?wt% tourmaline reach a maximum value in flexural strength and fracture toughness as compared to other composite ceramics. As the tourmaline content is 2?wt% and the sintering temperature is 1300?°C, the flexural strength and fracture toughness of the composite ceramics are the highest, increases of 36.2% and 36.6% over plain 3Y-TZP ceramic respectively. The unique microstructure was systematically investigated through X-ray diffraction, scanning electron microscopy, energy dispersive spectrum, and flourier transform-infrared. The strengthening and toughening mechanism of tourmaline in 3Y-TZP ceramic were also discussed.  相似文献   

19.
《Ceramics International》2019,45(13):16002-16007
Formation peculiarities of highly-doped (Y0.86La0.09Yb0.05)2O3 transparent ceramics have been studied by X-ray diffraction and electron microscopy methods. The phase composition evolution of 1.81Y2O3∙0.18La2O3∙0.01Yb2O3 powder mixtures annealed at the temperatures of 1100, 1200, 1300, and 1400 °C has been studied by XRD. It has been shown that Yb2O3 phase dissolves in Y2O3 matrix in the calcination temperature range of 1300–1400 °C. Complete dissolution of La2O3 in Y2O3 matrix occurs at temperatures above 1400 °C. La3+ ions enter in Y2O3 and Yb2O3 crystal structures simultaneously in the 1200–1300 °C range, which leads to a remarkable increase in the volume of the corresponding crystal lattices. The possible reasons for suppressing the crystalline growth of Y2O3 and Yb2O3 cubic phases have been discussed. Finally, (Y0.86La0.09Yb0.05)2O3 transparent ceramics have been obtained by solid-state vacuum sintering at 1650–1750 °C. Ceramics synthesized at a temperature of 1750 °C have been characterized by an in-line optical transmittance of 60% and a homogeneous distribution of constituent components within the volume and along the grain boundaries.  相似文献   

20.
The high-temperature (1500?°C) interactions of two promising dense, polycrystalline EBC ceramics, β-Yb2Si2O7 and β-Sc2Si2O7, with a calcia-magnesia-aluminosilicate (CMAS) glass have been explored as part of a model study. Unlike YAlO3 and γ-Y2Si2O7 in the accompanying Part I paper, little or no reaction is found between the Y-free EBC ceramics and the CMAS. In the case of β-Yb2Si2O7, a small amount of reaction-crystallization product Yb-Ca-Si apatite solid solution (ss) forms, whereas none is detected in the case of β-Sc2Si2O7. The CMAS glass penetrates into the grain boundaries of both EBC ceramics, and they both suffer from a new type of ‘blister’ cracking damage. This is attributed to the through-thickness dilatation-gradient caused by the slow grain-boundary-penetration of the CMAS glass. The success of a ‘blister’-damage-mitigation approach is demonstrated, where 1?vol% CMAS glass is mixed into the β-Yb2Si2O7 powder prior to sintering. The CMAS-glass phase at the grain boundaries promotes rapid CMAS-glass penetration, thereby avoiding the dilatation-gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号