首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Perovskite Na0.5(Bi1?xNdx)0.5TiO3 (x = 0, 0.01, 0.03, 0.05; xNd: NBT) ferroelectric films were synthesized on indium tin oxide (ITO)/glass substrates via chemical solution deposition. Structural characterization shows the similar phase-pure perovskite structures in all the films and gradually decreased grain sizes with Nd3+ doping amount increasing. For all the films, the leakage behaviors are dominant by the Ohmic conduction in low electric field region and interface-limited Fowler-Nordheim tunneling mechanism in high electric field region. Additionally, the space-charge-limited conduction is involved in 0.03Nd: NBT sample. Compared with the sample of x = 0, the resistivity can be improved through Nd3+-substitution in NBT. Enhanced ferroelectricity can be obtained from the dynamic polarization-electric field test, and the reversible domains switching in film can be confirmed by static dielectric constant-electric field measurement. Especially, the 0.03Nd: NBT possesses optimal electrical performances with a large remanent polarization (Pr = 26.7 μC/cm2) and a high dielectric tunability (19.6% at 100 kHz).  相似文献   

2.
Pure Na0.5Bi0.5TiO3 (NBT), donor W6+ doped NBT (NBTW), acceptor Ni2+ doped NBT (NBTNi), as well as donor W6+ and acceptor Ni2+ codoped NBT (NBTWNi) polycrystalline films are fabricated on indium tin oxide (ITO)/glass substrates via a chemical solution deposition method. The roles of aliovalent-ion substitution on the crystallinity, ferroelectric and dielectric properties of NBT film are mainly investigated. With the introduction of aliovalent-ion, the surface of the doped film becomes more uniform and the leakage current is reduced. Well saturated polarization-electric field (P-E) loops can be observed in W6+ and Ni2+ codoped NBT film due to its lowest leakage currents compared to those of other films. Also, the effect of voltage and frequency on the capacitance-voltage (C-V) curve and the dielectric tunability for the NBTWNi film is discussed. The ferroelectric and dielectric properties are largely improved in NBTWNi film, which can be ascribed to the synergetic effect of high-valence W6+ and low-valence Ni2+ ions. The cooperation between the acceptor and donor cations can effectively eliminate the mobile oxygen vacancies in NBT films.  相似文献   

3.
This work reports the characteristics of nonstoichiometric Na0.5+xBi0.5+yTi0.96W0.01Ni0.03O3 (x?=?0.0%, y?=?1.0%; x?=?0.5%, y?=?2.0%; x?=?1.0%, y?=?4.0%) ceramic films derived from chemical solution deposition and the role played by excess Na/Bi in modifying microstructure and electrical properties. Single perovskite phase structure can be maintained in all compositions. Decreased grain size can be obtained with the increasing compensation for volatile Na/Bi elements. Particularly, extra amounts of 0.5?mol% Na and 2.0?mol% Bi leads to reduced leakage and enhanced ferroelectric polarization. Meanwhile, due to the high breakdown electrical field strength and large difference between maximum and remanent polarization, an excellent energy storage performance can be achieved in Na0.505Bi0.52Ti0.96W0.01Ni0.03O3 sample, which is distinguished by a recoverable energy storage density of 40.5?J/cm3 and an energy storage efficiency of 43.6% at 2515?kV/cm as well as a good frequency stability. Hence, the regulation for the content of volatile elements is effective to modify the electrical response of Na0.5Bi0.5TiO3-based materials.  相似文献   

4.
Polycrystalline Ni doped Na.5Bi0.5TiO3 samples (Na0.5Bi0.5)Ti1-xNixO3, (x?=?0.5, 0.10, 0.15) have been prepared by solid state reaction. The appearance of the additional peak in X-ray diffraction pattern indicates the ordering of Ti4+ and Ni2+ ions. Polygonal grains are converted into flakes with an increase of Ni concentration. Replacement of Ti4+ by Ni2+ strongly modifies the relative contribution of two peaks in the Raman bands within 200–400?cm?1. Oxygen vacancy is observed in X-ray photoelectron spectrum to maintain charge neutrality due to aliovalent doping. Broad diffuse phase transition centered at the dielectric constant maximum indicates relaxor behaviour. Comparison between impedance and electric modulus spectrum suggests non-Debye relaxation. The ac conductivity follows the power law with the frequency exponent lies 0.52???0.72. The generation of holes by divalent Ni dopant at tetravalent Ti sites enhances optical band gap.  相似文献   

5.
Conductive perovskite lanthanum nickelate LaNiO3 (LNO) thin films were fabricated on SiO2/Si substrates through metal-organic chemical liquid deposition method. The effect of annealing temperature on the orientation and sheet resistance of the LNO films were investigated. XRD patterns showed that the LNO films deposited on SiO2/Si substrates exhibited preferred-(1 1 0) orientation. The lowest sheet resistance of the LNO thin films, 250 Ω/□ was obtained after being annealed at 650 °C for 1 h. Subsequently, Pb0.97La0.02(Zr0.85Sn0.13Ti0.02)O3 (PLZST) antiferroelectric thin films were prepared on the LaNiO3 buffered SiO2/Si substrates via sol–gel process. And the crystallinity, microstructure and electric properties of the PLZST thin films were studied in details.  相似文献   

6.
《Ceramics International》2016,42(10):12210-12214
The effects of annealing temperature on the structure, morphology, ferroelectric and dielectric properties of Na0.5Bi0.5Ti0.99W0.01O3+δ (NBTW) thin films are reported in detail. The films are deposited on indium tin oxide/glass substrates by a sol-gel method and the annealing temperature adopted is in the range of 560–620 °C. All the films can be well crystallized into phase-pure perovskite structures and show smooth surfaces without any cracks. Particularly, the NBTW thin film annealed at 600 °C exhibits a relatively large remanent polarization (Pr) of 20 μC/cm2 measured at 750 kV/cm. Additionally, it shows a high dielectric constant of 608 and a low dielectric loss of 0.094 as well as a large dielectric tunability of 62%, making NBTW thin film ideal in the room-temperature tunable device applications.  相似文献   

7.
Perovskite (1 − x)(0.06BiYbO3–0.94Pb(Ti0.5Zr0.5)O3)–xLiNbO3 (BYPTZ-LN) ceramics were synthesized by the conventional ceramic processing. The effect of LiNbO3 on the microstructure and piezoelectric properties was investigated. The perovskite phase and the Yb2Ti2O7 pyrochlore phase are coexisting in the BYPTZ-LN ceramics sintered at 1140 °C. The material with perovskite structure is tetragonal at x ≤ 0.04 and becomes single rhombohedral at x ≥ 0.08. A morphotropic phase boundary between rhombohedral and tetragonal phases is found in the composition range 0.04 ≤ x ≤ 0.08. Analogous to Pb(Zr,Ti)O3, the piezoelectric and electromechanical properties are enhanced for compositions near the morphotropic phase boundary. Piezoelectric constant d33values reach 290–360 pC/N. Electromechanical coefficients kp reach 0.38–0.55. The maximum values of d33, kp and Pr are obstained as x = 0.08, accompanying with the minimum values of Qm and Ec. The Curie temperature Tc and the maximum value of dielectric constant decrease with increasing LiNbO3 content. BYPTZ-LN ceramics with the high d33 value and the high thermal-depoling temperatures of >320 °C are obtained.  相似文献   

8.
Nowadays, much attention is paid for the development of lead-free complex or mixed metal oxides, which can be utilized for multi-functional devices. This communication provides the information on synthesis (by mixed oxide route) and physical properties (structural, electrical and ferroelectric) of the polycrystalline sample of Bi(Fe0.9La0.1)O3 Analysis of the phase formation and basic crystal data of the material using X-ray diffraction (XRD) technique shows an orthorhombic symmetry with well-defined cell parameters. It has been shown that a small amount (10%) of La substitution at the Fe site of BiFeO3 suppresses the impurity phase usually observed during phase formation of BiFeO3. The average crystallite size, calculated through applying Scherrer's technique, was found to be 68?nm. For the study of surface morphology (grain size and distribution) of the compound, the scanning electron microscope (SEM) was used. The grains of different dimension were found homogeneously distributed at the entire surface of the sample. The La substitution strongly affects the capacitive (dielectric) and resistive (electrical) characteristics of bismuth ferrite in a wide range of frequency and temperature. The contributions of grains and grain boundaries in the capacitive as well as in the resistive properties of the material at different temperatures and frequencies were studied by means of the impedance spectroscopy technique. This study has provided numerous useful and interesting data which may find potential industrial applications.  相似文献   

9.
A lead free polycrystalline material Sr(Bi0.5Nb0.5)O3 was prepared using a high-temperature solid-state reaction technique. Preliminary X-rays diffraction studies exhibit the formation of a single-phase compound in the orthorhombic crystal system. The study of microstructure of gold-coated pellet by scanning electron microscopy (SEM) shows well-defined and homogeneous distribution of grains on the surface of the sample. Detailed studies of dielectric parameters (i.e., εr and tan δ) of the compound as a function of temperature at selected frequencies reveal that the values of these parameters are almost independent of temperature. Studies of impedance and related parameters exhibit that these electrical properties of the material are strongly dependent on temperature, and bear a good correlation with the microstructure of the material. The decrease in value of bulk resistance on increasing temperature suggests the existence of negative temperature co-efficient of resistance (NTCR) in the material. Studies of electric modulus show the presence of hopping conduction mechanism in the material with non-exponential-type of relaxation. The nature of variation of dc conductivity with temperature confirms the Arrhenius- and NTCR- types of behaviors of the material. The ac conductivity spectrum provides a typical-signature of an ionic conducting system, and is found to obey Jonscher′s universal power law.  相似文献   

10.
Textured (Na0.85K0.15)0.5Bi0.5TiO3 (NKBT) ceramics with a relative density of >94% were fabricated by reactive-templated grain growth. Plated-like Bi4Ti3O12 template particles synthesized by the NaCl–KCl molten salt process were aligned by tape casting in a mixture of original oxide powders. The effect of sintering temperature on the grain orientation and electrical properties of textured NKBT ceramics were investigated. The results show that the textured ceramics have a microstructure with plated-like grains aligning in the direction parallel to the casting plane. The degree of grain orientation increased at increasing sintering temperature. The textured ceramics show anisotropic electrical properties in the directions parallel and perpendicular to the casting plane. The dielectric constant parallel to {h 0 0} plane is three times higher than that of the perpendicular direction in textured NKBT ceramics. The optimized sintering temperature is 1150 °C where the maximum dielectric constant is 2041, the remnant polarization is 68.7 μC/cm2, the electromechanical coupling factor (k31) and the piezoelectric constant (d33) amount to 0.31 and 134 pC/N, respectively.  相似文献   

11.
Ceramics with temperature-stable dielectric characteristics have been developed in the system: 0.6[0.85Na0.5Bi0.5TiO3-(0.15-x)Ba0.8Ca0.2TiO3-xBi(Mg0.5Ti0.5)O3]?0.4NaNbO3, x ≤ 0.15. Dielectric measurements exhibited relaxor ferroelectric characteristics with temperature-stable relative permittivity from εr~1330 ± 15% in the temperature range from ?70?°C to 215?°C and tanδ ≤ 0.02 from ?20?°C to 380?°C for x = 0 compositions. For the Bi(Mg0.5Ti0.5)O3 modified compositions the temperature range of stable relative permittivity extended from ?70?°C to 400?°C, with εr ~ 950 ± 15% and tanδ ≤ 0.02 from ?70?°C to 260?°C. Values of dc resistivity were ~ 108 Ω?m at a temperature of 300?°C and the corresponding RC constant values were in the range from 0.40 ? 0.78?s at 300?°C. All ceramic samples exhibited a linear polarisation-electric field response at maximum applied electric field of 5?kV/cm (1?kHz).  相似文献   

12.
The X-ray diffraction patterns of (Na2/3Pb1/3)(Mn1/2Nb1/2)O3 ceramics were measured within 15–850 K temperature range. The anomaly in the thermal expansion temperature dependence occurred in 250–365 K range. The generalised Cole–Cole model was proposed to describe the measured effective electric permittivity influenced by high electric conduction and the coexistence of two contributions ?*(T,f) = ?*lattice + ?*carriers was considered. The analysis of the electric permittivity and conduction exhibited two relaxation processes. The electric conduction relaxation characteristic time values indicated the small polaron mechanism with τ0 ≈ 10−13 s occurring in 240–345 K range and the ionic mechanism with τ0 ≈ 10−11 s involved in the other relaxation occurring in the 320–510 K range. The ionic relaxation process was ascribed to a subsystem of defects, which was weakly interrelated to the anomaly in thermal expansion of the (Na2/3Pb1/3)(Mn1/2Nb1/2)O3 ceramics. The Gate model was proposed to describe the ionic relaxation mechanism.  相似文献   

13.
Lead-free Bi0.5Na0.5TiO3 (BNT) piezoelectric thin films were deposited on Pt/TiOx/SiO2/Si substrates by Sol-Gel method. A dense and well crystallized thin film with a perovskite phase was obtained by annealing the film at 700 °C in a rapid thermal processing system. The relative dielectric constant and loss tangent at 12 kHz, of BNT thin film with 350 nm thickness, were 425 and 0.07, respectively. Ferroelectric hysteresis measurements indicated a remnant polarization value of 9 μC/cm2 and a coercive field of 90 kV/cm. Piezoelectric measurements at the macroscopic level were also performed: a piezoelectric coefficient (d33effmax) of 47 pm/V at E = 190 kV/cm was obtained. The piezoresponse force microscopy data confirmed that BNT thin films present ferroelectric and piezoelectric behavior at the nanoscale level.  相似文献   

14.
The effects of Ba(Mg1/3Nb2/3)O3 additives to lead-free (1-x)(Na0.5K0.5)NbO3-xBa(Mg1/3Nb2/3)O3 ceramics have been investigated. XRD patterns, SEM images and Raman spectra have been used to discuss phase structure transitions and microstructure. The dielectric behavior has been also investigated by using the empirical law, the Curie-Weiss law and the spin-glass model. Results show the diffused phase transition behavior to be enhanced by increasing Ba(Mg1/3Nb2/3)O3 addition and the dielectric behavior to be changed to the more short range order of relaxor ferroelectric. Barium and Magnesium cations are suggested to enter into the cation sites and induce the changes of lattice structure, microstructure, compositional fluctuation, cation disorder and correlation of neighboring cluster-sized moments.  相似文献   

15.
(1-x)(Bi0.5Na0.5)TiO3-xSrTiO3 (BNT-xST) (0 ≤ x ≤ 0.4) thin films were fabricated using a sol-gel technique on Pt(111)/Ti/SiO2/Si(100) substrates, which were investigated by piezoresponse force microscopy (PFM) and Raman spectroscopy. The composition-induced phase transition was analyzed by acquiring structural variations and the domain distribution on a local scale. Raman spectra showed phonon anomalies with peak broadening and shifting when increasing SrTiO3 (ST) concentrations were used. Changes in the domain morphology with changes in the composition were observed, and grains smaller than 0.5 µm were observed at lower concentrations of x = 0–0.25, while larger grains appeared with increasing ST contents. The switching spectroscopy PFM (SS-PFM) results supported a ferroelectric (FE) to relaxor ferroelectric (RFE) phase transition at approximately x ≈ 0.3 by means of analyzing the parameters as a function of the composition including the piezoresponse parameters of hysteresis loops (Dmax, Drem) and amplitude butterfly loops (Stotal, Sneg). Hence, these results demonstrated that the composition-driven FE to RFE phase transition behavior, which is consistent with the localized response behavior, is dependent on the ST content in bulk BNT-xST ceramics.  相似文献   

16.
Lead free piezoelectric Bi0.5(Na0.5K0.5)0.5TiO3 (pure and 1 wt.%, 2 wt.%, 4 wt.% Sb-doped) ceramics were synthesized away from its MPB. The crystalline nature of the BNKT ceramic was studied by XRD and SEM. Depolarization temperature (Td) and transition temperature (Tc) were observed through phase transitions in dielectric studies which were found to increase after Sb-doping, thus increasing its usable temperature range. In the study of relaxation behavior, the activation energy for relaxation was found to be 0.33, 0.43, 0.57 and 0.56 eV for pure and Sb-doped samples, respectively. All samples were found to exhibit normal Curie-Weiss law above their Tc. Doping of Sb was found to restrain the diffused character of the pure sample. In P-E loop, Sb-doping was found to increase the ferroelectric properties.Pure and Sb-doped BNKT ceramics exhibited high values of piezoelectric charge coefficient (d33) as 115, 121, 129 and 100 pC/N, respectively.  相似文献   

17.
The preparation of nickel tungstate (NiWO4) thin film by spray pyrolysis (SP) with ammonical solution is presented. The phase and surface morphology characterizations have been carried out by X-ray diffraction (XRD) and scanning electron microscope (SEM) analysis, respectively. The study of optical absorption spectrum in the wavelength range 350-850 nm shows the presence of direct as well as indirect band gaps in the material, respectively found to be 2.28 and 2.00 eV. The thin film material shows semiconducting behaviour and highly resistive at room temperature as evident from its dc electrical conductivity measurements obtained by the Two Point Probe method in the temperature range 310-500 K. The thin films deposited on fluorine doped tin oxide (FTO) coated conducting glass substrates are used as photoanode in photovoltaic electrochemical (PVEC) cell. The PVEC cell configuration is: NiWO4|Ce4+, Ce3+|Pt; 0.1 M in 0.1N H2SO4. The PVEC characterization reveals the fill factor and power conversion efficiency to be 0.47 and 0.78%, respectively. The flat band potential is found to be −0.32 V (SCE).  相似文献   

18.
Bi0.5(Na0.5K0.5)0.5TiO3 + y wt.% Nb (y = 0-1) piezoelectric ceramics were synthesized by solid state reaction. The effect of varying Nb concentration on various properties of BNKT ceramic has been investigated in detail. The effect of Nb-doping on dielectric and ferroelectric property has been presented. An increase in its depolarization temperature and Curie temperature with Nb concentration was observed. The electrical properties of pure and Nb-doped BNKT ceramic over a wide range of frequencies (20 Hz to 2 MHz) and temperature (30-430 °C) were studied using impedance spectroscopic technique.  相似文献   

19.
(Na0.52K0.45Li0.03)1−3xLax(Nb0.88Sb0.09Ta0.03)O3 (NKLLxNST) lead-free ceramics were prepared by normal sintering and their dielectric and piezoelectric properties were investigated. The X-ray methods indicate that the NKLLxNST ceramics with x≤0.003 present a pure perovskite phase at room temperature. The bulk density of NKLLxNST ceramics increases with proper amount of La2O3 contents, and reaches its highest value of 4.544 g/cm3 with the addition of 0.3 mol% La2O3. At x=0.003, remnant polarization Pr, piezoelectric constant d33 and planar mode electromechanical coupling factor kp of NKLLxNST ceramics reach the highest values of 37.80 μC/cm2, 346 pC/N and 40%, respectively, exhibiting excellent “soft” piezoelectric characteristics, demonstrating a tremendous potential of the compositions studied for device applications.  相似文献   

20.
The effect of Mn substitution on microstructure and electrical properties of epitaxial BiFeO3 (BFO) thin films grown by an all-solution approach was investigated. Raman analysis reveals that the Mn atoms substitution at Fe sites can result in Jahn-Teller distortion and thus lead to the weakness of long-range ferroelectric order. In addition, the break-down characteristics of BFO thin films are improved with the increase of Mn atoms content, although the leakage current is gradually increased. Meanwhile, the grain size, the dielectric constant and loss are also increased with the increase of Mn content. The P-E hysteresis loops and PUND results demonstrate that the intrinsic ferroelectric polarization is effectively improved with Mn atoms substitution as the grain size increased and Mn atoms play a role of nucleation sites. However, the ferroelectric properties are deteriorated with the excess substituted Mn content due to the higher leakage current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号