首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the context of a robot manipulator, a generalized neural emulator over the complete workspace is very difficult to obtain because of dimensionally insufficient training data. A query based learning algorithm is proposed in this paper that can generate new examples where control inputs are independent of states of the system. This algorithm is centered around the concept of network inversion using an extended Kalman filtering based algorithm. This is a novel idea since robot manipulator is an open loop unstable system and generation of control input independent of state is a research issue for neural model identification. Two trajectory independent stable control schemes have been designed using the neural emulator. One of the control schemes uses forward-inverse-modeling approach to update the controller parameters adaptively following Lyapunov function synthesis technique. The proposed scheme is trajectory independent unlike the back-propagation scheme. The second type of controller predicts the minimum variance estimate of control action using recall process (network inversion) and the control law is derived following a Lyapunov function synthesis approach so that the closed loop system consisting of controller and neural emulator remains stable. The simulation experiments show that the model validation approach is efficient and the proposed control schemes guarantee stable accurate tracking.  相似文献   

2.
A new adaptive-control scheme for direct control of manipulator end effector to achieve trajectory tracking in Cartesian space is developed in this article. The control structure is obtained from linear multivariable theory and is composed of simple feedforward and feedback controllers and an auxiliary input. The direct adaptation laws are derived from model reference adaptive control theory and are not based on parameter estimation of the robot model. The utilization of adaptive feedforward control and the inclusion of auxiliary input are novel features of the present scheme and result in improved dynamic performance over existing adaptive control schemes. The adaptive controller does not require the complex mathematical model of the robot dynamics or any knowledge of the robot parameters or the payload, and is computationally fast for on-line implementation with high sampling rates. The control scheme is applied to a two-link manipulator for illustration.  相似文献   

3.
Model based control schemes use inverse dynamics of the robot arm to produce the main torque component necessary for trajectory tracking. For a model-based controller one is required to know the model parameters accurately. This is a very difficult job especially if the manipulator is flexible. This paper presents a control scheme for trajectory control of the tip of a two arm rigid–flexible space robot, with the help of a virtual space vehicle. The flexible link is modeled as an Euler–Bernoulli beam. The developed controller uses the inertial parameters of the base of the space robot only. Bond graph modeling is used to model the dynamics of the system and to devise the control strategy. The efficacy of the controller is shown through simulated and animation results.  相似文献   

4.
A unified study of adaptive control and neural network based control schemes for the trajectory tracking problem of robot manipulators is presented. Efficacy of parametrized adaptive algorithms in compensating the structured uncertainties in robot dynamics is verified through extensive simulation. The ability of neural networks to provide a robust adaptive framework in the presence of both structured and unstructured uncertainties is investigated. A case study is carried out in support of a parametrized adaptive scheme using neural networks. Simulation results clearly indicate that the neural network based adaptive controller achieves better tracking in the presence of parametric uncertainties as well as unmodelled effects compared to the simple direct adaptive scheme.  相似文献   

5.
A non-linear model-based feedforward, feedback, and learning controller is presented. This controller can control a non-linear plant such as a robot whose dynamics are initially unknown. In the feedforward part, a recurrent neural network (RNN) is used to model the inverse dynamics of the plant. In the feedback part, a PD controller is added to handle unmodeled dynamics and disturbances. Furthermore, an add-on learning controller is established to reduce tracking errors for repetitive tasks. The controller is validated with the control of a simulated two-joint manipulator. Simulation results show that the controller can successfully learn the inverse dynamics of a robot, perform accurate tracking for a general trajectory, and improve its own performance over the repetitions of a trajectory, with and without a payload change. © 1997 John Wiley & Sons, Inc.  相似文献   

6.
The use of a proposed recurrent hybrid neural network to control of walking robot with four legs is investigated in this paper. A neural networks based control system is utilized to the control of four-legged walking robot. The control system consists of four proposed neural controllers, four standard PD controllers and four-legged planar walking robot. The proposed neural network (NN) is employed as an inverse controller of the robot. The NN has three layers, which are input, hybrid hidden and output layers. In addition to feedforward connections from the input layer to the hidden layer and from the hidden layer to the output layer, there is also feedback connection from the output layer to the hidden layer and from the hidden layer to itself. The reason to use hybrid layer is that robot’s dynamics consists of linear and non-linear parts. The results show that the proposed neural control system has superior performance to control trajectory of walking robot with payload.  相似文献   

7.
本文研究具有不确定性的机器人的轨迹跟踪控制问题。提出了一种由计算力矩控制器和神经网络补偿控制器构成的控制方案。探讨了一种用神经网络估计机器人系统不确定性的途径。给出了神经补偿控制器的设计方法,并证明了闭环系统的收敛性。仿真结构表明所提方案具有很好的鲁棒性和抗干扰能力。  相似文献   

8.
介绍了一种能提高高弧焊机器人焊缝跟踪精度的神经网络控制器,通过神经网络的补偿作用,弥补了由于无法知道机器人精确模型所造成的控制上的误差,不同于机器人控制中传统的网络控制器,本文提出并应用了基于笛卡尔空间轨迹控制的机器人焊缝跟踪神经网络,大大简化了控制算法,计算机模拟及实验表明,该控制器非常适用于只的实际焊接,对于现有机器人,无须改变其控制器内部结构,即可应用该技术,与常用的机器人关节力矩控制法相比  相似文献   

9.
Conventional robot control schemes are basically model-based methods. However, exact modeling of robot dynamics poses considerable problems and faces various uncertainties in task execution. This paper proposes a reinforcement learning control approach for overcoming such drawbacks. An artificial neural network (ANN) serves as the learning structure, and an applied stochastic real-valued (SRV) unit as the learning method. Initially, force tracking control of a two-link robot arm is simulated to verify the control design. The simulation results confirm that even without information related to the robot dynamic model and environment states, operation rules for simultaneous controlling force and velocity are achievable by repetitive exploration. Hitherto, however, an acceptable performance has demanded many learning iterations and the learning speed proved too slow for practical applications. The approach herein, therefore, improves the tracking performance by combining a conventional controller with a reinforcement learning strategy. Experimental results demonstrate improved trajectory tracking performance of a two-link direct-drive robot manipulator using the proposed method.  相似文献   

10.
This paper presents a discrete-time direct current (DC) motor torque tracking controller, based on a recurrent high-order neural network to identify the plant model. In order to train the neural identifier, the extended Kalman filter (EKF) based training algorithm is used. The neural identifier is in series-parallel configuration that constitutes a well approximation method of the real plant by the neural identifier. Using the neural identifier structure that is in the nonlinear controllable form, the block control (BC) combined with sliding modes (SM) control techniques in discrete-time are applied. The BC technique is used to design a nonlinear sliding manifold such that the resulting sliding mode dynamics are described by a desired linear system. For the SM control technique, the equivalent control law is used in order to the plant output tracks a reference signal. For reducing the effect of unknown terms, it is proposed a specific desired dynamics for the sliding variables. The control problem is solved by the indirect approach, where an appropriate neural network (NN) identification model is selected; the NN parameters (synaptic weights) are adjusted according to a specific adaptive law (EKF), such that the response of the NN identifier approximates the response of the real plant for the same input. Then, based on the designed NN identifier a stabilizing or reference tracking controller is proposed (BC combined with SM). The proposed neural identifier and control applicability are illustrated by torque trajectory tracking for a DC motor with separate winding excitation via real-time implementation.  相似文献   

11.
Two novel compensation schemes based on accelerometer measurements to attenuate the effect of external vibrations on mechanical systems are proposed in this paper. The first compensation algorithm exploits the neural network as the feedback-feedforward compensator whereas the second is the neural network feedforward compensator. Each compensation strategy includes a feedback controller and a neural network compensator with the help of a sensor to detect external vibrations. The feedback controller is employed to guarantee the stability of the mechanical systems, while the neural network is used to provide the required compensation input for trajectory tracking. Dynamics knowledge of the plant, disturbances and the sensor is not required. The stability of the proposed schemes is analyzed by the Lyapunov criterion. Simulation results show that the proposed controllers perform well for a hard disk drive system and a two-link manipulator.  相似文献   

12.
A decentralized adaptive control scheme is proposed for the trajectory tracking of a general n-degree-of-freedom robot manipulator. The robot is considered as a set of decoupled second-order systems with disturbances. The controller consists of feedforward from the desired trajectory based on the “inverse system” of the model, PID feedback from the actual trajectory, and auxiliary input for the compensation of the neglected terms in modeling in each subsystem. The gain is derived in diagonal matrix form, and is adjusted by the model reference adaptive control theory based on the Lyapunov's direct method. The result is high accuracy in path tracking despite the high speed, load change, and sudden torque disturbances. Numerical simulations on.a planar two-link robot manipulator are presented to show the performance under various practical considerations.  相似文献   

13.
In this article, an adaptive neural controller is developed for cooperative multiple robot manipulator system carrying and manipulating a common rigid object. In coordinated manipulation of a single object using multiple robot manipulators simultaneous control of the object motion and the internal force exerted by manipulators on the object is required. Firstly, an integrated dynamic model of the manipulators and the object is derived in terms of object position and orientation as the states of the derived model. Based on this model, a controller is proposed that achieves required trajectory tracking of the object as well as tracking of the desired internal forces arising in the system. A feedforward neural network is employed to learn the unknown dynamics of robot manipulators and the object. It is shown that the neural network can cope with the unknown nonlinearities through the adaptive learning process and requires no preliminary offline learning. The adaptive learning algorithm is derived from Lyapunov stability analysis so that both error convergence and tracking stability are guaranteed in the closed loop system. Finally, simulation studies and analysis are carried out for two three-link planar manipulators moving a circular disc on specified trajectory.  相似文献   

14.
In this paper, a compound cosine function neural network controller for manipulators is presented based on the combination of a cosine function and a unipolar sigmoid function. The compound control scheme based on a proportional-differential (PD) feedback control plus the cosine function neural network feedforward control is used for the tracking control of manipulators. The advantages of the compound control are that the system model does not need to be identified beforehand in the manipulator control system and it can achieve better adaptive control in an on-line continuous learning manner. The simulation results for the two-link manipulator show that the proposed compound control has higher tracking accuracy and better robustness than the conventional PD controllers in the position trajectory tracking control for the manipulator. Therefore, the compound cosine function neural network controller provides a novel approach for the manipulator control with uncertain nonlinear problems.  相似文献   

15.
This paper presents an improved neural computation where scheme for kinematic control of redundant manipulators based on infinity-norm joint velocity minimization. Compared with a previous neural network approach to minimum infinity-non kinematic control, the present approach is less complex in terms of cost of architecture. The recurrent neural network explicitly minimizes the maximum component of the joint velocity vector while tracking a desired end-effector trajectory. The end-effector velocity vector for a given task is fed into the neural network from its input and the minimum infinity-norm joint velocity vector is generated at its output instantaneously. Analytical results are given to substantiate the asymptotic stability of the recurrent neural network. The simulation results of a four-degree-of-freedom planar robot arm and a seven-degree-of-freedom industrial robot are presented to show the proposed neural network can effectively compute the minimum infinity-norm solution to redundant manipulators.  相似文献   

16.
This paper addresses the output feedback tracking control of a class of multiple‐input and multiple‐output nonlinear systems subject to time‐varying input delay and additive bounded disturbances. Based on the backstepping design approach, an output feedback robust controller is proposed by integrating an extended state observer and a novel robust controller, which uses a desired trajectory‐based feedforward term to achieve an improved model compensation and a robust delay compensation feedback term based on the finite integral of the past control values to compensate for the time‐varying input delay. The extended state observer can simultaneously estimate the unmeasurable system states and the additive disturbances only with the output measurement and delayed control input. The proposed controller theoretically guarantees prescribed transient performance and steady‐state tracking accuracy in spite of the presence of time‐varying input delay and additive bounded disturbances based on Lyapunov stability analysis by using a Lyapunov‐Krasovskii functional. A specific study on a 2‐link robot manipulator is performed; based on the system model and the proposed design procedure, a suitable controller is developed, and comparative simulation results are obtained to demonstrate the effectiveness of the developed control scheme.  相似文献   

17.
In this paper, a new adaptive neuro controller for trajectory tracking is developed for robot manipulators without velocity measurements, taking into account the actuator constraints. The controller is based on structural knowledge of the dynamics of the robot and measurements of joint positions only. The system uncertainty, which may include payload variation, unknown nonlinearities and torque disturbances is estimated by a Chebyshev neural network (CNN). The adaptive controller represents an amalgamation of a filtering technique to generate pseudo filtered tracking error signals (for the elimination of velocity measurements) and the theory of function approximation using CNN. The proposed controller ensures the local asymptotic stability and the convergence of the position error to zero. The proposed controller is robust not only to structured uncertainty such as payload variation but also to unstructured one such as disturbances. Moreover the computational complexity of the proposed controller is reduced as compared to the multilayered neural network controller. The validity of the control scheme is shown by simulation results of a two-link robot manipulator. Simulation results are also provided to compare the proposed controller with a controller where velocity is estimated by finite difference methods using position measurements only.  相似文献   

18.
A multi-layer feedforward neural network model based predictive control scheme is developed for a multivariable nonlinear steel pickling process in this paper. In the acid baths three variables under controlled are the hydrochloric acid concentrations. The baths exhibit the normal features of an industrial system such as nonlinear dynamics and multi-effects among variables. In the modeling, multiple input, single-output recurrent neural network subsystem models are developed using input–output data sets obtaining from mathematical model simulation. The Levenberg–Marquardt algorithm is used to train the process models. In the control (MPC) algorithm, the feedforward neural network models are used to predict the state variables over a prediction horizon within the model predictive control algorithm for searching the optimal control actions via sequential quadratic programming. The proposed algorithm is tested for control of a steel pickling process in several cases in simulation such as for set point tracking, disturbance, model mismatch and presence of noise. The results for the neural network model predictive control (NNMPC) overall show better performance in the control of the system over the conventional PI controller in all cases.  相似文献   

19.
This paper proposes two simple adaptive control schemes of robot manipulators. The first one is the state feedback control which consists of feedforward from the desired position trajectory, PD feedback from the actual trajectory, and an auxiliary input. The second one is the feedforward/feedback control which consists of a feedforward term from the desired position, velocity, and acceleration trajectory based on the inverse of robot dynamics. The feedforward, feedback, and auxiliary gains are adapted using simple equations derived from the decentralized adaptive control theory based on Lyapunov's direct method, and using only the local information of the corresponding joint. The proposed control schemes are computationally fast and do not require a priori knowledge of the detail parameters of the manipulator or the payload. Simulation results are presented in support of the proposed schemes. The results demonstrate that both controllers perform well with bounded adaptive gains.  相似文献   

20.
The performance of a controller for robot force tracking is affected by the uncertainties in both the robot dynamic model and the environmental stiffness. This paper aims to improve the controller’s robustness by applying the neural network to compensate for the uncertainties of the robot model at the input trajectory level rather than at the joint torque level. A self-adaptive fuzzy controller is introduced for robotic manipulator position/force control. Simulation results based on a two-degrees of freedom robot show that highly robust position/force tracking can be achieved, despite the existence of large uncertainties in the robot model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号