首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of novel Ag Cl/Ag_2CO_3 heterostructured photocatalysts with different Ag Cl contents(5 wt%,10 wt%, 20 wt%, and 30 wt%) were prepared by facile coprecipitation method at room temperature. The resulting products were characterized by powder X-ray diffraction(XRD), scanning electron microscopy(SEM), X-ray photoelectron spectroscopy(XPS), and ultraviolet–visible diffuse reflectance spectroscopy(UV–Vis DRS), respectively. The photocatalytic activity of the samples was evaluated by photocatalytic degradation of methyl orange(MO) under UV light irradiation. With the optimal Ag Cl content of 20 wt%, the Ag Cl/Ag_2CO_3 composite exhibits the greatest enhancement in photocatalytic degradation efficiency. Its first-order reaction rate constant(0.67 h-1) is5.2 times faster than that of Ag_2CO_3(0.13 h-1), and 16.8times faster than that of Ag Cl(0.04 h-1). The formation of Ag Cl/Ag_2CO_3 heterostructure could effectively suppress the recombination of the photo-generated electron and hole, resulting in an increase in photocatalytic activity.  相似文献   

2.
Cr 2 O 3-coated LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode materials were synthesized by a novel method. The structure and electrochemical properties of prepared cathode materials were measured using X-ray diffraction (XRD), scanning electron microscopy (SEM), charge-discharge tests, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The measured results indicate that surface coating with 1.0 wt% Cr 2 O 3 does not affect the LiNi 1/3 Co 1/3 Mn 1/3 O 2 crystal structure (α-NaFeO 2 ) of the cathode material compared to the pristine material, the surfaces of LiNi 1/3 Co 1/3 Mn 1/3 O 2 samples are covered with Cr 2 O 3 well, and the LiNi 1/3 Co 1/3 Mn 1/3 O 2 material coated with Cr 2 O 3 has better electrochemical performance under a high cutoff voltage of 4.5 V. Moreover, at room temperature, the initial discharging capacity of LiNi 1/3 Co 1/3 Mn 1/3 O 2 material coated with 1.0 wt.% Cr 2 O 3 at 0.5C reaches 169 mAh·g 1 and the capacity retention is 83.1% after 30 cycles, while that of the bare LiNi 1/3 Co 1/3 Mn 1/3 O 2 is only 160.8 mAh·g 1 and 72.5%. Finally, the coated samples are found to display the improved electrochemical performance, which is mainly attributed to the suppression of the charge-transfer resistance at the interface between the cathode and the electrolyte.  相似文献   

3.
La0.5Sm0.2Sr0.3MnO3/(Ag2O)x/2 (x = 0.00, 0.04, 0.08, 0.25, 0.30) samples were prepared by the solid-state reaction method, and their transport behaviors, transport mechanism, and magnetoresistance effect were studied through the measurement and fitting of ρ-T curves. The results show that the element Ag takes part in reaction when the doping amount is small. Ag is mainly distributed at the grain boundary of the host material and is in metallic state when the doping amount is relatively large; then the system becomes a two-phase composite. A small amount of Ag doping can apparently increase grain-boundary magnetoresistance induced by the spin-dependent scattering. The resistivity of the sample doped with 30 mol% Ag is one order of magnitude smaller than that of low-doped samples, and its magnetoresistance in the magnetic field of 0.5 T and at 300 K is strengthened apparently reaching 9.4%, which is connected not only with the improvement of the grain-boundary structure of the host material but also with the decrease of material resistivity.  相似文献   

4.
Triangulation of the Ag-Hg-Se-I system in the vicinity of quaternary phase Ag4HgSe2I2 was performed by differential thermal analysis, X-ray diffraction and electromotive force (EMF) methods. The spatial position of the phase region Ag4HgSe2I2-Se-HgI2 regarding the figurative point of silver was used to write the chemical reaction of formation of Ag4HgSe2I2. The EMF measurements were carried out by applying an electrochemical cell: (–) C|Ag|Ag2GeS3 glass|Ag4HgSe2I2, HgI2, Se|C (+), where C is graphite and Ag2GeS3 glass is the fast purely Ag+ ions conducting electrolyte. The linear dependence of the EMF of the electrochemical cell on temperature was used to determine the standard thermodynamic values of Ag4HgSe2I2 for the first time.  相似文献   

5.
6.
The phase diagram of the H2O-Zn(NO3)2-Al(NO3)3-Cu(NO3)2 quaternary system at 30 °C has been established by using the conductivity measurements. The solid-liquid equilibria of the H2O-Zn(NO3)2-Al(NO3)3, H2O-Zn(NO3)2-Cu(NO3)2, H2O-Al(NO3)3-Cu(NO3)2 ternary systems and two isoplethic sections were determined experimentally. The solid phases in equilibrium with the saturated solution are the tri- and hemipentahydrate of copper nitrate, the hexahydrate α and β of the zinc nitrate and the nonahydrate of aluminum nitrate. The copper and zinc nitrates are relatively soluble in opposition to the aluminum nitrate which presents some important precipitation domains.  相似文献   

7.
Immersion experiments were carried out to study H2S/CO2 corrosion behavior of low-alloy pipeline steel in terms of microstructure, corrosion kinetics, corrosion phases, microscopic surface morphology, cross-sectional morphology and elemental distribution. The experimental results indicated that the microstructure of designed steel was tempered martensite. The corrosion rate followed exponential behavior. H2S corrosion dominated the corrosion process, and the corrosion products were mackinawite, greigite and troilite. The corrosion products changed from mackinawite/greigite to mackinawite/troilite, and mackinawite dominated the corrosion phases. The corrosion products became more compact with immersion time, which led to decrease in corrosion rate. The chromium and molybdenum content in the corrosion product was higher than that in the steel substrate.  相似文献   

8.
The samples of La0.6Dy0.1Sr0.3MnO3/(Ag2O)x/2(x = 0.00, 0.02, 0.04, 0.06, 0.08, 0.10, 0.20, 0.25, and 0.30) were prepared by using the solid-state reaction method.Their magnetic property, transport behavior, transport mechanism and magnetoresistance effect were studied through the measurements of magnetization-temperature(M-T) curves, ρ-T curves and the fitting of ρ-T curves.The results indicated that Ag could take part in the reaction when the doping amount is small.However, when the doping amount is compar...  相似文献   

9.
The thermodynamic database of the ZrO2-Gd2O3-Y2O3-Al2O3 system is up-dated taking into account new data on lattice stabilities of ZrO2, Gd2O3 and Y2O3 and heat capacity measurements for the monoclinic phase Gd4Al2O9 and phase with garnet structure Gd3Al5O12. New data for the heat capacities of Gd2Zr2O7 (pyrochlore) and GdAlO3 (perovskite) as well as on the enthalpy of formation of fluorite solid solutions (Zr1−x Gd x )O2−x/2 were found to be in good agreement with calculated results. In comparison with the previous assessment, taking into account new experimental data resulted in a change of the melting character of the Gd4Al2O9 phase from a peritectic one to a congruent one in the Gd2O3-Al2O3 system. Correspondently, in the ternary system ZrO2-Gd2O3-Al2O3, the melting character of the three-phase assemblage Gd2O3 (B), Gd4Al2O9 and GdAlO3 changed from eutectic to transition type U. The T 0-lines for T/M and F/T diffusionless transformations and driving force of partitioning to equilibrium assemblage T + F were calculated in the ZrO2-Gd2O3-Y2O3 system.  相似文献   

10.
The electrochemical reduction of CO2 was studied utilizing halide ions as electrolytes, specifically, aqueous solutions of KCl, KBr, KI. Electrochemical experiments were carried out in a laboratory-made, divided H-type cell. The working electrode was a copper mesh, while the counter and reference electrodes were a Pt wire and an Ag/AgCl electrode, respectively. The results of our work suggest a reaction mechanism for the electrochemical reduction of CO2 where the presence of Cu-X as the catalytic layer facilitates the electron transfer from the electrode to CO2. Electron-transfer to CO2 may occur via the X ad(Br, Cl, I)-C bond, which is formed by the electron flow from the specifically adsorbed halide anion to the vacant orbital of CO2. The stronger the adsorption of the halide anion to the electrode, the more strongly CO2 is restrained, resulting in higher CO2 reduction current. Furthermore, it is suggested that specifically adsorbed halide anions could suppress the adsorption of protons; leading to a higher hydrogen overvoltage. These effects may synergistically mitigate the over potential necessary for CO2 reduction, and thus increase the rate of electrochemical CO2 reduction.  相似文献   

11.
By using the CALPHAD technique, an assessment of the binary PrCl3-CaCl2 and NdCl3-CaCl2 systems have been carried out. From measured phase equilibrium data and experimental integral properties, the PrCl3-CaCl2 and NdCl3-CaCl2 phase diagrams were optimized and calculated. A set of thermodynamic functions has been optimized based on an interactive computer-assisted analysis. The calculated results by present method agree well with the experimental data.  相似文献   

12.
A composite photocatalyst (La/TiO<,2>/Fe<,3>O<,4>) with a lanthanum doped TiO<,2> (La/TiO<,2>) shell and a magnetite core was prepared by coating photoactive LafTiO<,2> onto a magnetic Fe<,3>O<,4> core. The morphological, structural, and optical properties of as-prepared samples were charac- terized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and UV-vis absorption spectroscopy. The effect of lanthanum content on the photocatalytie properties was studied, and the result revealed that 0.15 mol% La/TiO<,2>/Fe<,3>O<,4>exhibited the highest photoactiv- ity. The photocatalytic properties of the prepared photocatalyst under UV and visible light were investigated in aqueous solution using methyl orange (MO) as a target pollutant. The results showed that the prepared photocatalyst was activated by visible light and used as an ef- fective catalyst in photooxidation reactions. In addition, the possibility of cyclic usage of the prepared photocatalyst was also confirmed. Moreover, La/TiO<,2> was tightly bound to Fe<,3>O<,4> and could be easily recovered from the medium by a simple magnetic process.  相似文献   

13.
Al2O3/Cu composites were prepared by external addition of Al2O3, and the effect of Al2O3 content on microstructure, density, hardness, electrical conductivity and vacuum electrical breakdown properties was studied. The results show that with increasing Al2O3 addition, the density of Al2O3/Cu composite significantly decreases, the hardness sharply increases and then slowly decreases, but the electrical conductivity invariably decreases. The vacuum breakdown test shows that with increasing Al2O3 addition, the breakdown strength first sharply increases and then decreases when the Al2O3 content exceeds 1.2 wt.%; the chopping current always exhibits a decreasing trend and the arc life first increases and then decreases. According to the morphology of arc erosion and analysis, the arc erosion resistance increases and then decreases sharply. In the range of experiments, the optimal arc erosion resistance of Al2O3/Cu composite can be obtained with the addition of 1.2 wt.% Al2O3.  相似文献   

14.
Al2O3/ZrO2/Al2O3 gate stacks were prepared on ultrathin SOI (Silicon on insulator) substrates by ultrahigh vacuum electron beam evaporation and post-annealed in N2 at 450°C for 30 min. Three clear nanolaminate layered structure of Al2O3(2.1 nm)/ZrO2(3.5 nm)/Al2O3(2.3 nm) was observed with a high-resolution cross-sectional transmission electron microscope (HR-XTEM). High frequency capacitance voltage (C-V) characteristics of a fully depleted (FD) SOI MOS capacitor at 1 and 5 MHz were studied. The minority carriers determine the high frequency C-V properties, which is opposite to the case of bulk MOS capacitors. The series resistance of the SOI substrate is found to be the determinant factor of the high frequency characteristics of FD SOI MOS capacitors. This article is based on a presentation in “The 7th Korea-China Workshop on Advanced Materials” organized by the Korea-China Advanced Materials Cooperation Center and the China-Korea Advanced Materials Cooperation Center, held at Ramada Plaza Jeju Hotel, Jeju Island, Korea on August 24≈27, 2003.  相似文献   

15.
Nanostructured Bi2Se3 and Sn0.5-Bi2Se3 were successfully synthesized by hydrothermal coreduction from SnCl2·H2O and the oxides of Bi and Se. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and field emission scanning electron microscope (FESEM). Bi2Se3 powders obtained at 180°C and 150°C consist of hexagonal flakes of 50–150 nm in side length and nanorods of 30–100 nm in diameter and more than 1 μm in length. The product obtained at 120°C is composed of thin irregular nanosheets with a size of 100–200 nm and several nanometers in thickness. The major phase of Sn0.5-Bi2Se3 synthesized at 180°C is similar to that of Bi2Se3. Sn0.5-Bi2Se3 powders are primarily nanorod structures, but small amount of powders demonstrate irregular morphologies.  相似文献   

16.
As part of a general contribution to the study of accelerator driven system (ADS) nuclear reactor feasibility, a study of the five-component system Bi-Fe-Hg-O-Pb was undertaken. New results about the quasi-binary Bi2O3-Fe2O3 are presented in this paper. The phase diagram was reinvestigated by differential scanning calorimetry, x-ray diffraction, and electron probe microanalysis. A new compound was discovered and characterized: Bi25FeO40. Its crystallographic structure was refined. Invariant and transition temperatures are given, as well as phase compositions.  相似文献   

17.
The role of minerals in biomass formation is understood only to a limited extent. When the term “photosynthesis—CO2 and H2O reduction of sugars, using solar energy”—is used, one normally thinks of chlorophyll as a compound containing magnesium. Alkali and alkaline earth metals present in leaf cells in the form of ions are equally essential in this solar energy bioconversion coupled with nitrogen fixation. Application of some of these principles can lead to artificial carbon-neutral processes on an industrial scale close to the concentrated CO2 emission sources.  相似文献   

18.
Metal-insulator-semiconductor (MIS) structures containing Ge nanocrystals embedded in both Al2O3 and ZrO2/Al2O3 are fabricated by an ultra-high vacuum electron-beam evaporation method. Secondary ion mass spectroscopy (SIMS) results indicate that Ge embedded in Al2O3 diffuses towards the surface of the Al2O3 layer after annealing at 800°C in N2 ambient for 30 min. Ge embedded in ZrO2/Al2O3 is stable, thus inducing less leakage current. Capacitance voltage studies indicate that annealing can effectively passivate the negatively charged trapping centers. Memory effect of the Ge nanoclusters is verified by hysteresis in the C-V curves in the Al2O3/Ge+Al2O3/Al2O3 and ZrO2/Ge+Al2O3/Al2O3 samples. This article is based on a presentation in “The 7th Korea-China Workshop On Advanced Materials” organized by the Korea-China Advanced Materials Cooperation Center and the China-Korea Advanced Materials Cooperation Center, held at Ramada Plaza Jeju Hotel, Jeju Island, Korea on August 24–27, 2003.  相似文献   

19.
A two-step solar thermochemical cycle for producing syngas from H2O and CO2 via Zn/ZnO redox reactions is considered. The first, endothermic step is the thermolysis of ZnO to Zn and O2 using concentrated solar radiation as the source of process heat. The second, non-solar, exothermic step is the reaction of Zn with mixtures of H2O and CO2 yielding high-quality syngas (mainly H2 and CO) and ZnO; the latter is recycled to the first solar step, resulting in net reactions CO2 = CO+0.5O2 and H2O= H2 +0.5O2. Syngas is further processed to liquid fuels via Fischer-Tropsch or other catalytic reforming processes. State-of-the-art reactor technologies and experimental results are provided for both steps of the cycle.  相似文献   

20.
Hydrogen gas as a clean energy resource was found to be largely bubbled from the H2O/H2O2/MnMoO4 system. The MnMoO4 powder was synthesized by a sol-gel method and was characterized with x-ray diffraction, transmission electron microscopy, and x-ray photoelectron spectrometry. The efficiency of the hydrogen generation increases with increasing H2O2 proportion, amount of MnMoO4 powder, and intensity of light resource. A mechanism is suggested for hydrogen generation from the H2O/H2O2/MnMoO4 system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号