首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An integrated anaerobic-aerobic treatment system of sulphate-laden wastewater was proposed here to achieve low sludge production, low energy consumption and effective sulphide control. Before integrating the whole system, the feasibility of autotrophic denitrification utilising dissolved sulphide produced during anaerobic treatment of sulphate rich wastewater was studied here. An upflow anaerobic sludge blanket reactor was operated to treat sulphate-rich synthetic wastewater (TOC=100 mg/L and sulphate=500 mg/L) and its effluent with dissolved sulphide and external nitrate solution were fed into an anoxic biofilter. The anaerobic reactor was able to remove 77-85% of TOC at HRT of 3 h and produce 70-90 mg S/L sulphide in dissolved form for the subsequent denitrification. The performance of anoxic reactor was stable, and the anoxic reactor could remove 30 mg N/L nitrate at HRT of 2 h through autotrophic denitrification. Furthermore, sulphur balance for the anoxic filter showed that more than 90% of the removed sulphide was actually oxidised into sulphate, thereby there was no accumulation of sulphur particles in the filter bed. The net sludge productions were approximately 0.15 to 0.18 g VSS/g COD in the anaerobic reactor and 0.22 to 0.31 g VSS/g NO3- -N in the anoxic reactor. The findings in this study will be helpful in developing the integrated treatment system to achieve low-cost excess sludge minimisation.  相似文献   

2.
Fluorescence in situ hybridization (FISH) was performed to analyze the nitrifying microbial communities in an activated sludge reactor (ASR) and a fixed biofilm reactor (FBR) for piggery wastewater treatment. Heterotrophic oxidation and nitrification were occurring simultaneously in the ASR and the COD and nitrification efficiencies depend on the loads. In the FBR nitrification efficiency also depends on ammonium load to the reactor and nitrite was accumulated when free ammonia concentration was higher than 0.2 mg NH3-N/L. FISH analysis showed that ammonia-oxidizing bacteria (NSO1225) and denitrifying bacteria (RRP1088) were less abundant than other bacteria (EUB338) in ASR. Further analysis on nitrifying bacteria in the FBR showed that Nitrosomonas species (NSM156) and Nitrospira species (NSR1156) were the dominant ammonia-oxidizing and nitrite-oxidizing bacteria, respectively, in the piggery wastewater nitrification system.  相似文献   

3.
两段ABR—A/O工艺在高浓度硫酸盐制药废水处理中的应用   总被引:1,自引:0,他引:1  
在高浓度硫酸盐制药废水的厌氧处理中,硫酸盐还原菌通过竞争性与非竞争性抑制影响产甲烷菌的活性和生长率。采用两段ABR-A/O组合工艺处理含高浓度硫酸盐制药废水。结果表明:系统稳定运行后,进水CODCr为10500~15000mg/L,SO42-为1000~1500mg/L时,CODCr、SO42-去除率分别达到98%和92%,出水各项指标均达到《污水综合排放标准》(GB8978—1996)二级标准。  相似文献   

4.
The present study investigated mesophilic anaerobic treatment of sulphate-containing wastewater in EGSB reactors and assessed the inclusion of nitrite in the reactor influent as a method for control of biological sulphate reduction. Two EGSB reactors, R1 and R2, were operated for a period of 581 days at varying volumetric loading rates, COD/SO4(2-) ratios and influent nitrite concentrations (R2 only). COD removal efficiencies of > 93% were achieved in both reactors at influent sulphate concentrations of up to 3,000 mg l(-1). A two-fold increase in the influent sulphate concentration, giving an influent COD/SO4(2-) ratio of 2, resulted in a reduction in reactor COD removal efficiency to 84% and 89%, in R1 and R2, respectively. Despite inclusion of nitrite in the R2 influent at concentrations up to 500 mg NO2-N l(-1), sulphate reduction proceeded similarly in R2 and R1, suggesting the ineffectiveness of nitrite as a potential inhibitor of SRB  相似文献   

5.
基于黄姜废水处理工程运行实际,着重分析了pH值、温度、COD及容积负荷等因素对UASB反应器启动的影响。该工程利用预处理+厌氧+好氧+混凝、脱色组合工艺处理黄姜废水,在进水COD和色度分别达12000mg/L和600倍的情况下,出水COD和色度分别为110mg/L和50倍,COD去除率达99%。废水经处理后出水水质符合《皂素工业水污染排放标准》(GB20425-2006)。  相似文献   

6.
This study was performed to evaluate the biodegradability of acrylonitrile wastewater, microbial inhibition effect of acrylonitrile wastewater on removal efficiency and the activity of sulphate reducing bacteria (SRB) according to COD/sulphate ratio. Acrylonitrile wastewater was hardly biodegradable in a biodegradability test, however, SRB activity was 57% for overall consumption of electron donor and it was relatively high value compared to 17% of reference test with glucose. COD removal of acrylonitrile wastewater was improved to 57% and 61% from 20% as the COD/sulphate ratio were 0.5 and 0.3 by sulphate addition to acrylonitrile wastewater. First order reaction rate constants k on organic removal of acrylonitrile wastewater were 0.001, 0.004 and 0.004 at each COD/sulphate ratio of 0.9, 0.5 and 0.3. Thus it was suggested that the activity of SRB was a significant factor for removing organics and sulphate simultaneously in acrylonitrile wastewater.  相似文献   

7.
香料香精废水中含有苯、酚、醇、胺、醛类及脂类、油类等物质,硫酸盐含量高,水量、水质变化大。设计采用隔油—气浮—微电解—催化氧化预处理工艺,UASB—两级A/O生化工艺,混凝/沉淀—砂滤深度处理工艺。运行结果表明:当高浓度原水CODCr高达18 073 mg/L时,出水CODCr仍在100 mg/L以下,其他指标均达到《污水综合排放标准》(GB 8978—1996)一级标准。  相似文献   

8.
An expanded granular sludge bed (EGSB) reactor was adopted to incubate the sludge biogranule that could simultaneously achieve sulfate reduction and sulfide reoxidization to elemental sulfur for treating molasses distillery wastewater. The EGSB reactor was operated for 175 days at 35 °C with a pH value of 7.0, chemical oxygen demand (COD) loading rate of 4.8 kg COD/(m3 d), and sulfate loading rate of 0.384 kg SO(4)(2-)/(m3 d). The optimal operation parameters, including the oxidation reduction potential (ORP), recycling rate, and hydraulic retention time (HRT), were established to obtain stable and acceptable removal efficiencies of COD, sulfate, and higher elemental sulfur production. With an ORP of -440 mV, a recycling rate of 300%, and HRT of 15 h, the COD and sulfate removal efficiencies were 73.4 and 61.3%, respectively. The elemental sulfur production ratio reached 30.1% when the elemental sulfur concentration in the effluent was 48.1 mg/L. The performance results were also confirmed by the mass balance calculation of sulfate, sulfide, and elemental sulfur over the EGSB reactor.  相似文献   

9.
厌氧氨氧化作为新型生物脱氮技术其关键在于如何实现厌氧氨氧化反应的启动,现有研究多以模拟废水为研究对象,本文以猪场废水为对象的研究,利用ASBR为反应器,接种反硝化污泥培养厌氧氨氧化细菌,在NH+4-N与NO-2-N浓度均为100 mg/L的条件下,运行125 d,经历启动初期、过渡期、系统稳定运行期三个阶段,厌氧氨氧化反应器中NH+4-N的去除率达91.70%,NO-2-N去除率92.0%;NH+4-N的容积负荷为36.90 mg/L.d,NO-2-N的容积负荷为37.55 mg/(L.d),成功实现了厌氧氨氧化反应器的启动。该研究成果对厌氧氨氧化技术在工程实践的应用具有重要的指导意义。  相似文献   

10.
In this study, specific methanogenic activity (SMA) test and fluorescence in situ hybridisation (FISH) were respectively used to determine acetoclastic methanogenic capacity, and composition and number of methanogenic and sulphate reducing bacterial (SRB) populations within a full scale anaerobic contact reactor treating a pulp and paper industry effluent. The sludge samples were collected from three different heights along the anaerobic reactor having a difficulty of completely stirring. Performance of the anaerobic reactor in terms of COD removal efficiency varied between 47 and 55% at organic loading rates in a range of 1.6-1.8 kg COD m(-3) d(-1) and methane yield varied between 0.18 and 0.20 m3CH4kg CODrem(-1). The anaerobic reactor was not operated for 2 weeks during the monitoring period. According to SMA test results, potential methane production rate was 276 mLCH4 gVSS(-1) d(-1) before the off period of the reactor, however it decreased to 159 mL CH4 gVSS(-1) d(-1) after this period. SMA test and FISH results along the reactor height showed that the acetoclastic methanogenic activity of the sludge samples, the relative abundance of acetoclastic methanogens, hydrogenotrophic methanogens and acetate oxidising SRB decreased as the reactor height increased, however the relative abundance of non-acetate oxidising SRB increased.  相似文献   

11.
The objective of this research was to study the dechlorination of 1,2-dichloroethane (1,2-DCA) in a synthetic wastewater with lab-scale anaerobic sequencing batch (ASBR) reactors. Anaerobic sludge was used as a biocatalyst. Sodium acetate and dextrose served as the main methanogenic substrate. Experimental studies were conducted at wide-range of volumetric (0.25-1.25 g COD/L.d) and specific (0.0362-0.181 g COD/ g VSS.d) loading rates and influent wastewater CODs (500-2500 mg/L). During 266 days of reactor operation, the mixed culture degraded 1,2 dichloroethane at concentrations of up to 50 mg/L, with an HRT of 48 hrs. No chlorinated intermediates or residues were found. 1,2-DCA degradation resulted in ethene and ethane formation. Acetate was the most effective electron donor for dechlorination, although, dextrose was also effective, but to a lesser extent. The mixed culture degraded 1,2 Dichloroethane in the temperature range of 28+/-4 degrees C, with the pH range of 7.25 to 7.95. The 1,2-DCA removal rates achieved, and the safe nature of the end products, signify the anaerobic sequencing batch (ASBR) reactor technology for practical decontamination of waters containing such types of organochlorines. The COD removal efficiencies were in the range of 95 to 98% depending on volumetric and specific loading rates applied.  相似文献   

12.
The growth of sulfate reducing bacteria (SRB) and filamentous sulfur bacteria was monitored on a laboratory scale in activated sludge reactors using acetate and peptone as the artificial wastewater. When the artificial wastewater contained acetate and peptone, filamentous bacteria increased in the sludge and the SVI values increased. There was a good correlation between sulfate reducing activity and sulfur oxidation activity in the produced sludge. The microbial community change of filamentous sulfur bacteria and sulfate reducing bacteria was analyzed using the fluorescent in situ hybridization (FISH) method. The tendency for the growth of filamentous sulfur bacteria Thiothrix eikelboomii following the growth of SRB was observed. The percentage of SRB385- hybridized cells and DNMA657-hybridized cells found in the total cell area increased from 2-3% to 7-10% when the filamentous bulking occurred.  相似文献   

13.
A new anaerobic-oxic biological filter reactor, which was packed with carbon fibre and aerated with micro-bubbles, was proposed. The reactor performance was examined using dye works wastewater compared with the activated sludge reactor. Effluent SS from the experimental reactor was significantly lower than that from the activated sludge reactor, and transparency was higher. Temperatures of the activated sludge reactor were over 35 degrees C and DOC removal ratios were 40-80% depending on the influent wastewater. On the other hand, the DOC removal efficiency of the experimental reactor was over 70%, when the reactor temperature was over 22 degrees C. In the anaerobic zone, sulphate reduction occurred predominantly and acetate was produced. In the oxic reactor, sulphur oxidation and organic removal occurred. When the amount of sulphate reduction in the anaerobic zone increased, DOC and colour in effluent decreased. The sulphate reducing activity of biofilm at 30 degrees C was three times higher than those at 20 degrees C. The sulphate reducing activity of biofilm in the oxic zone was higher than those in the anaerobic zone, meaning that the sulphate reduction-oxidation cycles were established in the biofilm of the oxic zone. Microbial community of sulphate reducing bacteria was examined by in situ hybridisation with 16S rRNA targeted oligonucleotide probes. Desulfobulbus spp. was most common sulphate reducing bacteria in the anaerobic zone. In the oxic zone, Desulfobulbus spp. and Desulfococcus spp. were observed.  相似文献   

14.
为探究硫酸盐还原菌(sulfate reducing bacteria,SRB)在不同碳源条件下还原硫酸盐的最佳pH值条件及其还原动力学过程,分别以甘蔗渣和乳酸钠为碳源,负载SRB处理含硫酸盐酸性废水。结果表明:以甘蔗渣、乳酸钠为碳源,SRB均在pH为6时对硫酸盐的去除效果最佳,最大去除率分别为71. 82%、85. 31%,体系氧化还原电位分别为-242、-164 m V;而在pH为4条件下,SRB对硫酸盐的去除效果甘蔗渣优于以乳酸钠为碳源的体系,对硫酸盐最大去除率分别为49. 04%、36. 24%,体系氧化还原电位分别为-229、-57 mV;两种碳源条件下,SRB还原SO_4~(2-)的过程都符合一级动力学模型,在以甘蔗渣为碳源、pH为6的体系中,其最大还原速率分别为0. 20007/d、0. 12688/d。  相似文献   

15.
史玲  黄廷林  马采莲  苏刚 《给水排水》2012,48(3):141-144
在常温常压下,对Fe2O3/γ—A12O3+H2O2和ClO2+TiO2两种催化氧化体系处理铬黑T废水的效果进行了分析。试验结果表明,处理甲基橙废水效果较好的Fe2O3/γ—Al2O3+H2O2组合对铬黑T的降解效果非常有限,而ClO2+TiO2组合的处理效果较好:以500 mg/L的铬黑T溶液为模拟废水,当pH为4,C102投加量为200 mg/L,TiO2投加量为500 mg/L,反应时间为90 min时,脱色率达89.96%,CODCr的去除率可达45.36%。  相似文献   

16.
Fenton试剂处理港口化学品洗舱废水   总被引:1,自引:0,他引:1  
根据珠海某港口化学品洗舱废水的组成,配置甲醛、甲苯、苯酚的单独污染物模拟废水,采用Fenton试剂对港口废水和模拟废水进行氧化处理。通过实验探讨了不同的H2O2和Fe2+浓度、pH值、反应时间下各种废水COD的去除情况,确定了各种废水最佳的操作条件。港口废水在最佳的操作条件下COD去除率约为88%,废水的COD质量浓度从2 000~2 200 mg/L降到低于280 mg/L,废水由原来的无法生化变为易生物降解。苯酚、甲醛、甲苯模拟废水在各自最佳的操作条件下,COD去除率也都达到85%以上。  相似文献   

17.
催化二氧化氯氧化处理难降解废水特性研究   总被引:8,自引:0,他引:8  
在二氧化氯化学氧化和催化氧化体系对比试验的基础上,探讨了催化二氧化氯氧化的过程与催化特性。试验结果表明:二氧化氯化学氧化处理CODCr为3 500 mg/L的配制难降解废水时, 最佳反应pH为6-8、氧化剂用量为1 000 mg ClO2/L,反应时间为60 min,CODCr去除率可达50%左右;而采用催化二氧化氯氧化处理配制废水时,最佳反应pH为2左右,氧化剂经济用量为800 mg ClO2/L,反应时间为45-60 min,CODCr去除率可达80%以上,去除1 kgCODCr氧化荆费用为3.7元, 废水可生化性得到很大的提高,表明催化二氧化氟氧化法是一种新型高效的难降解废水处理技术。  相似文献   

18.
Anaerobic ammonia oxidation (Anammox) has been identified as a new general process-strategy for nitrogen removal in wastewater treatment. In order to evaluate the role and effects of the Anammox process in wetlands, laboratory-scale model experiments were performed with planted fixed bed reactors. A reactor (planted with Juncus effusus) was fed with synthetic wastewater containing 150-200 mg L(-1) NH4+ and 75-480 mg L(-1) NO2(-). Under these operating conditions, the plants were affected by the high ammonia and nitrite concentrations and the nitrogen removal rate fell within the same range of 45-49 mg N d(-1) (equivalent to 0.64-0.70 g Nm(-2)d(-1)) as already reported by other authors. In order to stimulate the rate of nitrogen conversion, the planted reactor was inoculated with Anammox biomass. As a result, the rate of nitrogen removal was increased 4-5-fold and the toxic effects on the plants also disappeared. The results show that, in principle, subsurface flow wetlands can also function as an "Anammox bioreactor". However, the design of a complete process for the treatment of waters with a high ammonia load and, in particular, the realisation of simple technical solutions for partial nitrification have still to be developed.  相似文献   

19.
硫酸盐酸性矿山废水是我国矿区水污染中对生态环境破坏影响最大的污染源之一,通过实验室静态实验确定高效SRB最佳生长条件参数为温度35℃,pH 7.0,COD/SO42-比值为1.3,Fe2+=150 mg/L。最后,利用自行设计、研制的内升流(流化床)外降流(生物膜滤池)式厌氧生物反应器进行同步除硫、脱氮、除磷、去除重金属离子酸性废水综合治理的可行性研究,实验表明这一研究思路和工艺设计是可行性的,废水综合处理可达到较为满意的效果。  相似文献   

20.
Liu Y  Li Y  Lv Y 《Water science and technology》2012,65(11):2084-2090
This study investigated some factors affecting ammonium removal and nitrite accumulation by Alcaligenes faecalis C16, which was isolated from the activated sludge of a coking wastewater treatment plant. Nitrite was produced from ammonium only in the presence of citrate, acetate, meat extract, peptone or ethanol. The highest amount of nitrite was found with citrate as carbon source. A. faecalis C16 could not use glucose, fructose, sucrose and methanol. Under the optimum conditions of initial pH 6.0, C/N 14, 30 °C and 120 rpm, a maximum nitrite accumulation of 28.29 mg/L NO(2)(-)-N was achieved when the organism grew with citrate in four days. Nitrite accumulation increased with the increase of NH(4)(+)-N. Furthermore, A. faecalis C16 was shown to have phenol-degrading capacity during ammonium removal. Metabolism of phenol resulted in acidification of the media, which is not favorable for nitrification, whereas many other carbon sources made the medium more alkaline. However, no inhibitory effect by phenol was observed when phenol and acetate were used as mixed carbon source at different phenol/sodium acetate (P/S) ratios and their pH values were all controlled above 9.2 or P/S ratios below 5:5. These results suggested that A. faecalis C16 has some potential application in industrial wastewater treatment systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号