首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TiO2介孔薄膜的电阻可能是影响染料敏化太阳能电池光电转化效率的主要因素之一.设计了一种可用于测试TiO2介孔薄膜电阻的方法,研究了2种不同电阻值的TiO2介孔薄膜的电阻变化规律和2种TiO2介孔薄膜组装的染料敏化太阳能电池(DSC)的光电转换性能.结果显示,采用低电阻的TiO2薄膜光电极有利于DSC光电转换效率的提高.  相似文献   

2.
Morphology control on the 10 nm length scale in mesoporous TiO(2) films is crucial for the manufacture of high-performance dye-sensitized solar cells. While the combination of block-copolymer self-assembly with sol-gel chemistry yields good results for very thin films, the shrinkage during the film manufacture typically prevents the build-up of sufficiently thick layers to enable optimum solar cell operation. Here, a study on the temporal evolution of block-copolymer-directed mesoporous TiO(2) films during annealing and calcination is presented. The in-situ investigation of the shrinkage process enables the establishment of a simple and fast protocol for the fabrication of thicker films. When used as photoanodes in solid-state dye-sensitized solar cells, the mesoporous networks exhibit significantly enhanced transport and collection rates compared to the state-of-the-art nanoparticle-based devices. As a consequence of the increased film thickness, power conversion efficiencies above 4% are reached.  相似文献   

3.
A novel bifunctional linker molecule, bis(4-mercaptophenyl)phosphinic acid, is designed to be used in a QDs solar cells. The linker anchors to TiO(2) mesoporous film through the phosphinic acid functional group and to the PbS QDs through the two thiol groups. The way of attachment of this new linker molecule in a photovoltaic PbS QDs/TiO(2) mesoporous device was studied by FTIR measurements. The photovoltaic performance of this new linker in a heterojunction PbS QDs solar cell show high V(oc) relative to QDs based solar cells, which will allow to receive high power conversion efficiency using this novel designed linker. This novel bifunctional linker molecule should pave the way for enhancing binding strength, and efficiency of QDs solar cells compared to the state-of-the-art linkers.  相似文献   

4.
Solid-state dye-sensitized solar cell with 7.1% efficiency at 100 mW/cm(2) is reported, one of the highest observed for N719 dye. Excellent performance was achieved via a graft copolymer-templated, organized mesoporous TiO(2) film with a large surface area using spindle-shaped, preformed TiO(2) nanoparticles and solid polymer electrolyte.  相似文献   

5.
Highly crystalline mesoporous anatase TiO(2) is prepared through supramolecular self-assembly and by utilizing cetyltrimethylammonium bromide (CTAB) as templating material. Photoanodes of dye-sensitized solar cells (DSSCs) made from these TiO(2) nanoparticles are found to have a high specific surface area of 153 m(2)/g and high surface roughness. Optical absorption spectroscopy studies reveal that the photoanode films adsorb four times more dye than films made of commercial P25 TiO(2). Mercury porosimetry and field emission scanning electron microscope (FESEM) studies show hierarchical macro- and meso-porosity of the photoanode films leading to better dye and electrolyte percolation, combined with improved electron conduction pathways compared to P25 films. Electrochemical impedance studies confirm lower impedance and higher electron lifetime in the synthesized mesoporous TiO(2) films compared to P25 films. Higher photovoltaic efficiency was recorded of cells made from the synthesized mesoporous TiO(2) in comparison to the corresponding cells made from P25. Incident-photon-to-current efficiency data provided critical understanding of recombination kinetics, and provided proof of Mie scattering by the self-assembled submicrometer sized TiO(2) aggregates and the macropores in their structure. The scattering phenomenon was further corroborated by diffused reflectance studies. An in-depth analysis of CTAB-templated mesoporous TiO(2) has been conducted to show how it can be a good candidate photoanode material for enhancing the performance of DSSCs.  相似文献   

6.
Using a doctor-blade method, a highly viscous titanium dioxide (TiO2) paste was deposited on a glass substrate coated with fluorine doped tin oxide (FTO). The paste was mainly composed of commercially available TiO2 nanoparticles (P25) and hydroxypropyl cellulose (HPC) as organic filler. Varying the content of HPC in the TiO2 paste changed the physical properties of the mesoporous TiO2 layer, particularly its porosity and surface area. From the quantification of dyes on Ti2, layer and the electrochemical impedance spectroscopy (EIS) study of the dye-sensitized solar cells (DSSCs), the surface area of the TiO2 film was found to have decreased. This came with the increase of HPC content while the porosity of the film increased, consistent with the concurrent decrease of short-circuit current density (Jsc) and efficiency (eta). The increased porosity greatly affected the electron transport through the TiO2 film by decreasing the coordination number of the TiO2 particles resulting to a decrease of the electron diffusion coefficient.  相似文献   

7.
张亚  杨兵初  周聪华  王丽丽  童思超 《功能材料》2012,43(19):2716-2719
以葡萄糖为原料水热合成碳球作为模板剂,将其与TiO2纳米晶共混制备纳米多孔TiO2光阳极。采用场发射电子扫描电镜(SEM)、台阶仪、紫外-可见分光光度计(UV-Vis)等对TiO2薄膜的表面形貌、厚度和散射能力进行表征。研究发现,随着碳球含量的增加,光阳极单位体积内的表面积先增加后减小;薄膜对光的散射能力也呈现同样趋势。采用所制备的光阳极组装染料敏化太阳能电池,性能测试结果表明,随着碳球含量的增加,电池短路电流密度先增加,后减小。当碳球加入量为TiO2纳米晶质量的3%时,电池光电转换效率达到最佳为5.15%。  相似文献   

8.
以Ti(SO4)2为钛源,采用尿素辅助水热法合成了介孔TiO2微球,利用XRD、FESEM和比表面积分析仪对样品的晶型、形貌和比表面积进行分析,探讨了尿素加入量对TiO2微球的颗粒尺寸、比表面积、孔径和孔容的影响。采用刮涂法,用所合成的介孔TiO2微球制备了染料敏化太阳能电池(DSSC)的光阳极,结果表明,尿素用量为1.2g合成的介孔TiO2微球所组装的电池在模拟太阳光的照射下(100mW/cm2,AM1.5),光电转换效率为6.2%,明显高于商用P25纳晶所组装的电池光电转换效率(4.24%)。  相似文献   

9.
Park SW  Lee K  Lee DK  Ko MJ  Park NG  Kim K 《Nanotechnology》2011,22(4):045201
We have developed a facile method to position different dyes (N719 and N749) sequentially in a mesoporous TiO(2) layer through selective desorption and adsorption processes. From the selective removal of the only upper part of the first adsorbed dye, double-layered dye-sensitized solar cells have been successfully achieved without any damage to the dye. From the incident photon-to-current conversion efficiency (IPCE) measurement, the multi-layered dye-sensitized solar cell (MDSSC) was found to exhibit an expanded spectral response for the solar spectrum while maintaining the maximum IPCE value of each single-layered cell. The highest photocurrent density, 19.3 mA cm( - 2), was obtained from the MDSSC utilizing an N719/N749 bi-layered mesoporous TiO(2) film. The power conversion efficiency of 9.8% was achieved from the MDSSC, which is higher than that of single N719-or N749-based cells and cocktail-dyed (a mixture of N719 and N749) cells.  相似文献   

10.
This work reports the use of sodium fluoride (in ethylene glycol electrolyte) as the replacement of hydrofluoric acid and ammonium fluoride to fabricate long and perpendicularly well-aligned TiO? nanotube (TNT) (up to 21 μm) using anodization. Anodizing duration, applied voltage and electrolyte composition influenced the geometry and surface morphologies of TNT. The growth mechanism of TNT is interpreted by analyzing the current transient profile and the total charge density generated during anodization. The system with low water content (2 wt %) yielded a membrane-like mesoporous TiO? film, whereas high anodizing voltage (70 V) resulted in the unstable film of TNT arrays. An optimized condition using 5 wt % water content and 60 V of anodizing voltage gave a stable array of nanotube with controllable length and pore diameter. Upon photoexcitation, TNTs synthesized under this condition exhibited a slower charge recombination rate as nanotube length increased. When made into cis-diisothiocyanato-bis(2,2?-bipyridyl-4,4?-dicarboxylato) ruthenium(II) bis (tetrabutyl-ammonium)(N719) dye-sensitized solar cells, good device efficiency at 3.33 % based on the optimized TNT arrays was achieved with longer electron time compared with most mesoporous TiO? films.  相似文献   

11.
The light harvesting efficiency of dye-sensitized solar cells was enhanced by using a scattering layer. Such as sphere type TiO2, inverse photonic crystal TiO2, hollow spherical TiO2. Among these materials, the TiO2 with inverse photonic crystal (IPC) structure, synthesized by self-assembly using spherical templates, has attracted much attention due to their photonic crystal characteristics and light scattering effects. However, when applied in the DSSCs, the surface area of IPC is very low that caused insufficient adsorption amount of dye molecules. In the present work, a scattering layer with mesoporous inverse photonic crystal (MIPC) TiO2 film was fabricated by the sol-gel reactions with surfactant-assisted sol-gel method using poly(methyl methacrylate) as the template and titanium (IV) isopropoxide as the TiO2 precursor. After removing the PMMA and surfactant, a highly ordered macroporous structure with mesopores were successfully obtained. The surface area and total pore volume of the MIPC were 82 m2/g and 0.31 cm3/g, respectively, which is much larger than those of the IPC. The DSSCs with the scattering layer of MIPC film exhibited 18 and 10% higher photo-conversion efficiency than those of cells only with a nano-crystalline TiO2 film and with scattering layer of IPC film. From UV-visible spectra of dye solutions, the MIPC film showed a higher amount of absorbed dye molecules than those of the reference and IPC films. Accordingly, an increase in the photo-current density through abundant adsorption of the dye, coupled with inherent light scattering ability can improve overall photo-conversion efficiency.  相似文献   

12.
以表面构筑了TiO2纳米管阵列的金属钛为基底,采用溶胶-凝胶工艺和浸渍-提拉技术涂覆介孔SiO2薄膜,构建了TiO2纳米管/介孔SiO2复合膜。利用SAXRD、FTIR、HRTEM和FESEM等表征样品的结构和微观形貌。研究表明,在高度有序、规整排列的TiO2纳米管阵列基底上,利用溶胶-凝胶工艺和浸渍-提拉技术涂覆有六方相介孔SiO2薄膜的复合膜具有良好的生物活性。  相似文献   

13.
低温制备介孔碳对电极构建的染料敏化太阳电池优化研究   总被引:2,自引:0,他引:2  
以高比表面积的介孔碳为催化层材料通过低温烧结构建出对电极, 着重优化了其组装的染料敏化太阳电池(DSC)的整体结构和性能. 结果表明: 在碳浆料中添加Triton X100能改善碳颗粒之间以及碳催化层与衬底之间的接触界面, 促使DSC的转换效率从4.50%提升到4.82%, 增幅为7.1%. 随TiO2薄膜厚度增加, DSC的转换效率先急剧增加, 随后趋于缓和, 其变化趋势是染料吸附量与电子传输路径相互竞争的结果. 在电解质中添加磷酸三丁酯能减小电解质电阻, 促使DSC的转换效率从3.59%提升到4.42%, 增幅为23.1%. 优化后, 介孔碳对电极DSC的转换效率达到4.82%.  相似文献   

14.
In this study, we describe the use of organized mesoporous titanium oxide (TiO(2)) films as three-dimensional templates for protein microarrays with enhanced protein loading capacity and detection sensitivity. Multilayered mesoporous TiO(2) films with high porosity and good connectivity were synthesized using a graft copolymer consisting of a poly(vinyl chloride) (PVC) backbone and poly(oxyethylene methacrylate) (POEM) side chains as a structure-directing template. The average pore size and thickness of the TiO(2) films were 50-70 nm and 1.5 μm, respectively. Proteins were covalently immobilized onto mesoporous TiO(2) film via 3-aminopropyltriethoxysilane (APTES), and protein loading onto TiO(2) films was about four times greater than on planar glass substrates, which consequently improved the protein activity. Micropatterned mesoporous TiO(2) substrates were prepared by fabricating poly(ethylene glycol) (PEG) hydrogel microstructures on TiO(2) films using photolithography. Because of non-adhesiveness of PEG hydrogel towards proteins, proteins were selectively immobilized onto surface-modified mesoporous TiO(2) region, creating protein microarray. Specific binding assay between streptavidin/biotin and between PSA/anti-PSA demonstrated that the mesoporous TiO(2)-based protein microarrays yielded higher fluorescence signals and were more sensitive with lower detection limits than microarrays based on planar glass slides.  相似文献   

15.
Dye-sensitized solar cells (DSSCs) have demonstrated considerable potential due to their solar energy conversion efficiency and their fabrication from relatively low cost materials. Titanium dioxide (TiO2) nanoparticles are widely used in the fabrication of the DSSC electrodes. There is a considerable energy requirement however required for the sintering of the TiO2 particles during the fabrication of the mesoporous electrodes. This study investigates the use of microwave (MW) plasma treatments as a rapid, energy efficient processing technique for the sintering of the metal oxide particles. A comparison is made with conventional furnace treatments for the sintering of TiO2 nanoparticles (Degussa P25), deposited onto fluorine doped tin oxide (FTO) coated glass substrates. Subsequent to the TiO2 sintering, ruthenium based dye (N719) adsorption studies were carried out for coatings heated using both sintering techniques. Based on UV/Vis absorption spectra measurements of 5 mins plasma and 30 mins furnace sintering, it was observed that both sintering techniques exhibited similar levels of dye adsorption. A decrease in the level of dye adsorption was observed for the TiO2 coatings sintered for longer periods (up to 10 mins in this study). This change with longer plasma treatment times was associated with rutile grain growth and a decrease in surface roughness, possibly due to a densification of the mesoporous structure. The effect of TiO2 coating plasma treatment times on the conversion efficiency of the dye sensitised electrodes was also evaluated. Plasma treatments of 5 mins were found to yield the highest conversion efficiency of 6.4%.  相似文献   

16.
Mesoporous films made of titanium dioxide nanowires are desirable for dye-sensitized solar cells because nanowires provide direct conduction pathways for photogenerated electrons. Anatase titanium dioxide nanowires with polycrystalline microstructure were synthesized on titanium foil using a three-step process. First, the top surface of the titanium foil was transformed to Na(2)Ti(2)O(4)(OH)(2) nanotubes through hydrothermal oxidation in NaOH. Next, the Na(2)Ti(2)O(4)(OH)(2) nanotubes were converted to H(2)Ti(2)O(4)(OH)(2) nanotubes by ion exchange. Finally, the H(2)Ti(2)O(4)(OH)(2) nanotubes were converted to polycrystalline anatase nanowires through a topotactic transformation. The film morphology evolution, crystal structure transformations and growth mechanism are described in detail. Titanium foil reacts with NaOH to form Na(2)Ti(2)O(4)(OH)(2) sheets, which exfoliate and spiral into nanotubes. The Na(2)Ti(2)O(4)(OH)(2) nanotubes are immersed in HCl solution to replace the Na(+) ions with H(+) ions. During the topotactic transformation of H(2)Ti(2)O(4)(OH)(2) nanotubes to anatase TiO(2) nanowires, the sheets made of edge bonded TiO(6) octahedra in the H(2)Ti(2)O(4)(OH)(2) nanotubes dehydrate and move towards each other to form anatase crystals oriented along the nanotube axis which creates a polycrystalline nanowire. These mesoporous TiO(2) nanowire films were suitable for use as dye-sensitized solar cell photoanodes.  相似文献   

17.
Herein, we present a straightforward bottom-up synthesis of a high electron mobility and highly light scattering macroporous photoanode for dye-sensitized solar cells. The dense three-dimensional Al/ZnO, SnO(2), or TiO(2) host integrates a conformal passivation thin film to reduce recombination and a large surface-area mesoporous anatase guest for high dye loading. This novel photoanode is designed to improve the charge extraction resulting in higher fill factor and photovoltage for DSCs. An increase in photovoltage of up to 110 mV over state-of-the-art DSC is demonstrated.  相似文献   

18.
Biphasic electrode systems are studied for the case of the oxidation of the water-insoluble liquid N,N-didodecyl-N',N'-diethylphenylenediamine (DDPD) neat and dissolved in bis(2-ethylhexyl) phosphate (HDOP) and immersed in aqueous electrolyte media. The oxidation process in the absence of HDOP is accompanied by transfer of the anion (perchlorate or phosphate) from the water into the organic phase. However, in the presence of HDOP, oxidation is accompanied by proton exchange instead. This electrochemically driven proton exchange process occurs over a wide pH range. Organic microdroplet deposits of DDPD in HDOP at basal plane pyrolytic graphite electrodes are studied by voltammetric techniques and compared in their behavior to organic microphase deposits in mesoporous TiO2 thin films. The mesoporous TiO2 thin film acts as a host for the organic liquid and provides an alternative biphasic electrode system compared to the random microdroplet/graphite system. Two types of mesoporous TiO2 thin-film electrodes, (i) a 300-400-nm film on ITO and (ii) a 300-400-nm film on ITO sputter-coated with a 20-nm porous gold layer, are investigated.  相似文献   

19.
Shen YJ  Lee YL 《Nanotechnology》2008,19(4):045602
Colloidal cadmium sulfide (CdS) quantum dots (QDs) were prepared and surface modified by mercaptosuccinic acid (MSA) to render a surface with carboxylic acid groups (MSA-CdS). The MSA-CdS QDs were then assembled onto bare TiO(2) mesoporous films using the carboxylic groups/TiO(2) interaction. The TiO(2) film was also surface modified by 3-mercaptopropyl trimethoxysilane (MPTMS) or 3-aminopropyl-methyl diethoxysilane (APMDS) to prepare, respectively, a thiol (-SH) or amino (-NH(2)) terminated surface for binding with the CdS QDs. The experimental results showed that the MPTMS-modified film has the highest adsorption rate and adsorption amount to the CdS QDs, attributable to the strong thiol/CdS interaction. In contrast, the adsorption rate and incorporated amount of the QDs on the bare TiO(2) film are much lower than for the silane-modified films. The incident photon-to-current conversion efficiency (IPCE) obtained for the CdS-sensitized TiO(2) electrode was about 20% (at 400?nm) for the bare TiO(2), 13% for the MPTMS-TiO(2), and 6% for APMDS-TiO(2). The current-voltage measurement under dark conditions reveals a higher dark current on the MPTMS-?and APMDS-modified electrodes, indicating a lower coverage ratio of CdS on these TiO(2) films. This result is attributed to the fast adsorption rate of CdS QDs on the bottleneck of a mesopore which inhibits the transport of the QDs deep into the inner region of a pore. For the bare TiO(2) film, the lower incorporated amount of CdS but higher energy conversion efficiency indicates the formation of a better-covered CdS QDs monolayer. The moderate adsorption rate of MSA-CdS QDs using the carboxylic acid/TiO(2) interaction is responsible for the efficient assembly of QDs onto the mesoporous TiO(2) films.  相似文献   

20.
崔旭梅  左承阳  蓝德均  王军  黄载春 《功能材料》2012,43(11):1386-1388
采用丝网印刷的方式制备了染料敏化太阳能电池的TiO2薄膜光阳极、TiO2-ZnO复合薄膜光阳极以及TiO2/ZnO双层薄膜光阳极,研究了ZnO对TiO2薄膜光阳极的调制改性作用。研究结果表明分别以醋酸锌和ZnO直接掺杂制备的TiO2-ZnO复合薄膜光阳极同未掺杂的TiO2薄膜光阳极相比,以醋酸锌为原料制备的复合薄膜光阳极使电池转换效率提高了1倍,而由于微米量级的ZnO的粒径大,用其作原料制得的复合薄膜光阳极反而使电池的转换效率有所降低。以醋酸锌为原料制备的TiO2/ZnO双层薄膜光阳极同TiO2薄膜光阳极相比,电池转换效率提高了13倍,通过性能优化后电池的转换效率达到4.7%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号