首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
6082铝合金的高温本构关系   总被引:2,自引:0,他引:2  
韦韡  蒋鹏  曹飞 《塑性工程学报》2013,20(2):100-106
利用Gleeble-3500热模拟机,研究6082铝合金在350℃~500℃、应变速率10-2s-1~5s-1、最大变形程度60%条件下的热压缩变形行为。得到了高温下该铝合金的真应力-应变曲线。分析流变应力与应变速率和变形温度之间的关系,建立了高温热变形的本构关系。推导出包含Arrhenius项的Zener-Hollomon参数所描述的高温流变应力表达式。为减少应变的影响,建立4阶多项式对材料参数进行拟合,得到改进的本构方程,并与实验值进行对比。结果表明,应变速率和变形温度对6082铝合金流变应力有显著影响,流变应力随变形温度的升高而降低,随应变速率的增大而增大。该合金属于正应变速率敏感材料,合金热变形过程受热激活控制,激活能为145.977kJ/mol。  相似文献   

2.
Al-6.2Zn-2.3Mg-2.3Cu合金热压缩变形的流变应力与组织演变   总被引:1,自引:0,他引:1  
利用GPL-1500热模拟试验机对Al-6.2Zn-2.3Mg-2.3Cu合金在不同温度和不同应变速率条件下进行高温压缩试验,得到压缩真应力-应变曲线,并得出该合金的变形激活能和流变应力-应变方程。结果表明,变形温度和应变速率的变化对流变应力的影响明显,流变应力随变形温度的提高而显著降低,随应变速率的提高而增加。该合金高温变形过程的流变应力可用Zener-Hollomon参数(Z)描述;用双曲正弦函数修正的Arrhenius关系表示的流变应力方程为.ε·=1.282×100[sin(0.010σ)]4.9145exp(-134157/RT)。  相似文献   

3.
在Gleeble-1500D热模拟试验机上,采用高温等温压缩试验,对Cu-2.0Ni-0.5Si-0.15Ag合金在应变速率为0.01~5s-1、变形温度为600~800℃、最大变形程度为60%条件下的流变应力行为进行了研究.分析了实验合金在高温变形时的流变应力和应变速率及变形温度之间的关系.并研究了在热压缩过程中组织的变化.结果表明:热模拟实验中,应变速率和变形温度的变化强烈地影响合金流变应力的大小,流变应力随变形温度升高而降低,随应变速率提高而增大.从流变应力、应变速率和温度的相关性,得出了该合金高温热压缩变形时的应力指数n,应力参数α,结构因子A,热变形激活能Q和流变应力方程.合金动态再结晶的显微组织强烈受到变形温度的影响.  相似文献   

4.
6061铝合金热变形行为的研究   总被引:1,自引:0,他引:1  
采用Gleeble-1500热模拟实验机研究了6061铝合金在变形温度573~773 K、应变速率0.01~2 s-1、最大变形程度45%条件下的高温压缩变形行为,分析了合金在高温变形过程中流变应力与应变速率和变形温度之间的关系,建立了6061铝合金高温变形的本构关系.结果表明:合金的流变应力随变形温度的升高而降低,随应变速率的增大而增大;试验条件下,该合金的流变行为可用Zener-Hollomon参数来描述,变形激活能为236.858 kJ/mol,应力指数为8.926.  相似文献   

5.
采用Gleeble-1500D热模拟机高温等温压缩试验,研究了新型反应堆中子吸收材料-碳化硼-铝硅复合材料在应变速率为0.1~10s-1、变形温度为300~500℃条件下的流变应力特征.结果表明:该材料在试验条件下压缩变形时均存在稳态流变特征,应变速率和变形温度强烈影响试验材料流变应力;该流变应力随应变速率的提高而增大,随变形温度的升高而降低;采用Zener-Hollomon参数的双曲正弦函数描述该复合材料高温变形的峰值流变应力,获得峰值流变应力解析式,其热变形激活能为236.248 kJ/mol.  相似文献   

6.
通过在Gleeble-1500D热模拟试验机上进行高温等温压缩试验,对Cu-0.4Zr合金在应变速率为0.001~10 s~(-1)、变形温度为550~900℃、最大变形程度为55%条件下的流变应力行为进行探讨。分析了该合金在高温变形时的流变应力和应变速率及变形温度之间的关系,并对其在热压缩过程中的组织演变进行观察。结果表明:热模拟试验中,应变速率和变形温度的变化强烈地影响合金流变应力的大小,流变应力随变形温度升高而下降,随应变速率提高而增大。结合流变应力、应变速率和变形温度的相关性,计算得出了该合金高温热压缩变形时的应力指数(n)、应力参数(α)、结构因子(A)、热变形激活能(Q)和本构方程。合金动态再结晶的显微组织强烈受到应变速率的影响。  相似文献   

7.
Al-Mn-Mg-Cu-Ni合金热压缩变形的流变行为和组织   总被引:1,自引:0,他引:1  
在Gleeble-1500热模拟机上对Al-Mn-Mg-Cu-Ni合金进行热压缩试验,分析合金的流变应力与应变速率和变形温度之间的关系,计算高温变形时的变形激活能,并研究合金在变形过程中的显微组织。结果表明:Al-Mn-Mg-Cu-Ni合金在本实验条件下具有正的应变速率敏感性;流变应力随应变速率的增大而增大,随变形温度的升高而减小。该合金热压缩变形的流变应力行为可用双曲正弦形式的本构方程来描述,也可用Zener-Hollomon参数来描述,其变形激活能为209.84kJ/mol。随着热变形温度的升高和应变速率的减小,合金中的主要软化机制逐步由动态回复转变为动态再结晶。  相似文献   

8.
7039铝合金高温的热变形行为   总被引:2,自引:3,他引:2  
采用圆柱试样在Gleeble-1500材料热模拟实验机上对7039铝合金进行高温等温压缩实验,研究了该合金在变形温度为300-500℃,应变速率为0.01-10/s条件下的流变变形行为.结果表明:变形温度和应变速率对合金流变应力的大小有显著影响,流变应力随变形温度的升高而降低,随心变速率的增加而升高;在应变速率(ω)<10/s条件下合金表现出动态回复特征,而应变速率(ω)=10/s时,合金发生了局部动态再结晶.7039铝合金的高温流变行为可用Zener-Hollomon参数描述.从流变应力、应变速率和变彤温度的相关性,得出了该合金高温变形时的四个材料常数.  相似文献   

9.
在Gleeble-1500D热模拟实验机上,在应变速率为0.01~5 /s、变形温度为600~800 ℃条件下,采用高温等温压缩实验对Cu-2.0Ni-0.5Si-0.03P合金的流变应力行为进行研究。结果表明:热模拟实验中,应变速率和变形温度的变化强烈地影响合金流变应力的大小,流变应力随变形温度升高而降低,随应变速率提高而增大;在应变温度为750和800 ℃时,合金热压缩变形流变应力出现明显的峰值应力,表现为连续动态再结晶特征。从流变应力、应变速率和温度的相关性,得出该合金热压缩变形时的热变形激活能和本构方程。  相似文献   

10.
采用Gleeble-1500热模拟机研究6016铝合金单道次高温压缩变形时的显微组织演变。采用光学显微镜和透射电子显微镜分析合金在不同变形条件下的组织形貌特征。结果表明:在高温压缩变形时,该合金的变形激活能为270.257kJ/mol,硬化指数为8.5254;流变应力双曲正弦的自然对数值与温度补偿Zener-Hollomon参数自然对数值成线性关系;合金低温、低应变速率时的主要变形组织为动态回复组织,而高温变形时产生局部动态再结晶组织;该铝合金高温变形时的主要软化机制为动态回复,只有在高温、高应变速率下发生部分的动态再结晶;合金平均亚晶粒尺寸随温度补偿应变速率Zener-Hollomon参数的升高而减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号