首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present results of molecular-dynamics simulations of the thermal conductivity, κ, of ZrO2 and Y2O3-stabilized ZrO2 (YSZ). For both pure ZrO2 and YSZ with low concentrations of Y2O3, we find that the high-temperature κ is typical of a crystalline solid, with the dominant mechanism being phonon-phonon scattering. With increasing Y2O3 concentration, however, the mechanism changes to one more typical of an amorphous system. In particular, phononlike vibrational modes with well-defined wave vectors appear only at very low frequencies. As in amorphous materials, the vast majority of vibrational modes, while delocalized, do not propagate like ordinary phonon modes but transport energy in a diffusive manner. We also find that the few highest frequency modes are localized and do not contribute to κ.  相似文献   

2.
Porous Y2O3-stabilized ZrO2 (YSZ) samples were synthesized by preparing NiO/YSZ composites by tape casting and calcining at 1800 K, reducing the NiO to nickel in H2 at 973 K, and finally leaching the nickel out of the structure with 2.2 M HNO3 at 353 K. Porous YSZ was prepared from NiO/YSZ composites containing 0, 20, 40, and 50 wt% NiO. Complete removal of the nickel was demonstrated by XRD, weight changes, and porosity increases. Porosities >75% could be achieved without structural collapse of the YSZ phase. Finally, the method was applied to the fabrication of a solid oxide fuel cell with a copper-based anode operating on H2 and n -butane.  相似文献   

3.
The tetragonal to monoclinic (t–m) phase transformation of zirconia has been the object of extensive investigations of the past 20 years and is now recognized as being of martensitic nature. However, martensitic transformation has only been observed by transmission electron microscopy or indirect methods. Though the benefit on the fracture toughness and crack resistance was the main interest, the transformation is now considered for its consequences on the degradation of the material. The use of atomic force microscopy reported here allowed the observation of the first stages of martensite relief growth and of new martensitic features.  相似文献   

4.
Yttria-stabilized zirconia (YSZ) coatings were produced by reactively cosputtering metallic zirconium and yttrium targets in an argon and oxygen plasma using a system with multiple magnetron sputtering sources. Coating crystal structure and phase stability, as functions of Y2O3 content, substrate bias, and annealing temperature, were investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Results demonstrated that highly (111)-oriented tetragonal and cubic zirconia structures were formed in 2 and 4.5 mol% Y2O3 coatings, respectively, when the coatings were grown with an applied substrate bias. Conversely, coatings deposited with no substrate bias had random tetragonal and cubic structures. XRD analysis of annealed coatings showed that the cubic zirconia in 4.5 mol% Y2O3 coatings exhibited structural stability at temperatures up to 1200°C. Transformation of the tetragonal to monoclinic phase occurred in 2 mol% Y2O3 coating during high-temperature annealing, with the fraction of transformation dependent on bias potential and annealing temperature.  相似文献   

5.
The biaxial flexural strength and fracture toughness of tape-cast yttria-stabilized zirconia, for application as the electrolyte in solid oxide fuel cells, have been measured at room temperature and at a typical operating temperature of 900°C. The flexural strength was measured in ring-on-ring loading and decreased from 416 MPa at room temperature to 265 MPa at 900°C. The fracture toughness was measured using two different techniques: indentation fracture and double-torsion loading. The latter was more reliable and gave a fracture toughness of 1.61 ± 0.12 MPa·m1/2 at room temperature and 1.02 ± 0.05 MPa·m1/2 at 900°C. The flexural strength and fracture toughness were quantitatively consistent with fracture being initiated at the observed surface defects. The lower fracture toughness at 900°C is partly due to a reduction in elastic modulus and partly due to a reduction in the work of fracture.  相似文献   

6.
A novel, nontraditional route for controlling the morphology of yttria-stabilized zirconia nanopowders is explained. For understanding the real nature of yttrium zirconium oxalate nonisothermal decomposition and for the development of nanosize 3 mol% Y2O3·97mol% ZrO2, mass spectrometry, X-ray, and TEM investigation were used. Characteristics of zirconia crystallization under nonisothermal heating conditions were studied. Morphology evolution during Y-Zr oxalate nonisothermal decomposition was investigated to optimize the heating schedule of calcination. The nonlinear heating regime has been used to produce nanosized Y2O3-stabilized tetragonal ZrO2 powder with the finest primary crystallites and narrowest secondary aggregate size distribution.  相似文献   

7.
Voronoi tessellation was applied to quantify the microstructural homogeneity of palladium particles in random Pd/cubic yttria-stabilized zirconia (YSZ) composites with the Pd concentration ranging from 0 to 30 vol%. Room-temperature impedance measurements were used to determine the capacitance of the composites. A fourfold enhancement in capacity near the percolation threshold of Pd was obtained. The percolation threshold was estimated at ∼30 vol% Pd using the normalized percolation theory (NPT). Data obtained from Voronoi diagrams resulted in a quantitative measure for the homogeneity of the dual-phase composite. The homogeneity was found to decrease with increasing Pd concentration in the composites. Near the theoretical value of the percolation threshold, the Pd phase appeared to be distributed too inhomogeneously for preparing insulating composites. No large increase in capacity as predicted by NPT could therefore be experimentally verified.  相似文献   

8.
9.
A pulsed chemical vapor deposition from metal-organic precursors (MOCVD) system was used to produce solid zirconia, and yttria-stabilized zirconia (YSZ) films. A total of six candidate metal-organic precursors for zirconia and three for yttria were investigated. Three precursor solutions for YSZ proved suitable for pulsed-MOCVD processing. Layers were deposited on metal, alumina, and porous nickel cermet substrates. Under optimal deposition conditions, precursor conversion efficiency of 90% was achieved using a solution of 3.74 vol% zirconium 2-methyl-2-butoxide + 0.42% yttium methoxyethoxide in toluene. The film growth rate was 7.5 μm·h−1 at 525°C deposition temperature. Two alkoxide precursors produced YSZ layers with material costs under $0.50/(μm·cm2).  相似文献   

10.
The effect of deposition conditions on the growth of yttria-stabilized zirconia (YSZ) films on textured silver substrates using the chemical vapor deposition (CVD) process was investigated. The crystalline structure of the YSZ film depended strongly on the deposition conditions, such as substrate temperature and deposition time. YSZ films prepared at 750°C using β-diketone chelate sources, which had an orientation of c -axis normal to the textured silver substrate surface. The YSZ surface was dense but not rough, and the YSZ film grew granular-like. The cross-sectional image of YSZ film showed the columnar growth feature; the growth rate was ∼20 nm/min.  相似文献   

11.
To obtain powder with a composition of 3 mol% Y2O3–97 mol% ZrO2, a process of Y-Zr oxalate powder production has been optimized, to produce an oxalate with minimal particle size. The methodology of the nonisothermal decomposition of Y-Zr oxalate has been explained. Characteristics of the nonisothermal decomposition of different oxalates have been studied. Nanocrystalline Y2O3-stabilized ZrO2 (YSZ) powder with a narrow size distribution of primary particles and aggregates was produced. The zirconia powder that was obtained from the smallest oxalate powder via nonisothermal decomposition had a particle size of 8–10 nm. The YSZ powder was weakly aggregated, with a narrow aggregate-size distribution of 70–90 nm.  相似文献   

12.
Tensile strengths of 2.0 to 5.0 mol% Y2O3-stabilized ZrO2 polycrystals were described using the newly developed tensile testing method. The tensile test was conducted by attaching three strain gauges on both sides of a rectangular bar that was 10 mm by 1 mm by 200 mm. The tensile strength of tetragonal ZrO2 polycrystals (TZP) containing 2.0 mol% Y2O3 showed 745 MPa, whereas the bend strength of this material was 1630 MPa. Inelastic behavior of the stress-strain curve was observed at critical stresses and strains of 500 to 700 MPa and 0.25% to 0.35%, respectively. Although deviation from proportionality was observed to be small, it increased with the increase of temperature from −100° to 200°C.  相似文献   

13.
An yttria-stabilized zirconia powder, free of monoclinic phase, may be prepared by an oxalate method in an ethanol solution at strong acidity. This study demonstrates that the control of pH in the preparation of precursors has a significant effect on the ability of precursors to crystallize and hence plays an important role in determining the formation and fraction of various crystalline phases in the resulting yttria-stabilized zirconia powder. With the increase of pH, a precursor with a certain crystalline form may be transformed into an amorphous precursor, and a monoclinic phase appers in the phase composition of the resulting powder. The results of XRD analysis and Raman spectroscopy are discussed.  相似文献   

14.
Thermodynamic properties of 8-mol%-yttria-stabilized zirconia have been determined in the 810° to 1040°C temperature range at low Po2. A high-temperature solid-state coulometric titration method was used. The mass action constant, Kma, can be represented at low Po2 as Kma=0.677 exp [(–3.98 ±0.03 eV)/kT].  相似文献   

15.
Samples of 3 mol% Y2O3-stabilized tetragonal ZrO2 ceramics were annealed at 250°C in atmospheres of water vapor pressures of 1 bar and 26 mbar. As demonstrated by the water uptake and the lattice expansion, water molecules were incorporated into the ZrO2 lattice during annealing, and the amount of the incorporated water is determined by the water vapor pressure. Owing to the filling of oxygen vacancies by the incorporated water molecules, part of the tetragonal ZrO2 transformed to the monoclinic structure, and protonic defects were induced. The expected proton conduction was confirmed by the polarity of the water vapor concentration cells.  相似文献   

16.
The atomic structures of two symmetric [001] tilt grain boundaries in yttria-stabilized cubic-zirconia, Σ5 (310) and near-Σ13 (510), are studied by Z -contrast scanning transmission electron microscopy. Both boundaries are composed of periodic arrays of highly symmetric structural units, with a distinct unit for each boundary. Oxygen K -edge electron energy-loss spectra show that the oxygen coordination is similar between the bulk and grain boundary, indicating that oxygen ions within the grain boundary reside in distorted tetrahedral sites. Atomic models of the grain boundaries are proposed that are consistent with the experimental data. The core structures are different from previously studied metal or oxide grain boundaries and are unique to the fluorite structure. Yttrium segregation to the grain boundaries is also investigated by electron energy-loss spectroscopy. Yttrium is found to segregate preferentially to the Σ5 grain boundary, and the spatial distribution of the segregation layer is confined to within 1 nm of the boundary plane.  相似文献   

17.
A yttria-stabilized zirconia (YSZ) thin film on an La0.8Sr0.2MnO3 porous cathode substrate was prepared, using electrophoretic deposition (EPD) to fabricate a solid oxide fuel cell (SOFC). The electrical conductivity of an La0.8Sr0.2MnO3 substrate is satisfactorily high at room temperature; therefore, YSZ powder could be deposited electrophoretically onto an La0.8Sr0.2MnO3 substrate without any extra surface treatment, such as a metal coating. Successive repetition of EPD and sintering was required to obtain a film without gas leakage, because of the thermal expansion coefficient mismatch between the YSZ and the La0.8Sr0.2MnO3 substrate. On the other hand, the electromotive force of the oxygen concentration in the cell that used YSZ film prepared via EPD increased and attained the theoretical value when the number of deposition and calcination cycles was increased. Six or more successive repetitions were required to obtain a YSZ film without gas leakage. A planar-type SOFC was fabricated, using nickel as the anode and YSZ film (∼10 μm thick) that had been deposited onto the La0.8Sr0.2MnO3 substrate as the electrolyte and cathode. The cell exhibited an open circuit voltage of 1.0 V and a maximum power density of 1.5 W/cm2. Thus, the EPD method could be used as a colloidal process to prepare YSZ thin-film electrolytes for SOFCs.  相似文献   

18.
The objective of this study was to establish the mechanism(s) controlling degradation of yttria-tetragonally-stabilized zirconia (Y-TZP) powder in aqueous suspensions and determine the significance of this degradation to the aqueous physical chemistry of Y-TZP. Experiments were performed on commercially available Y-TZP powder placed in aqueous suspensions at 25°C. Experimental investigations included analysis of the aqueous chemistry of Y-TZP in water via ICP-MS, determination of the surface and bulk structure of the powder via XRD and solid-state NMR, and observation of changes in surface charges via zeta potential determinations. The goal of this study was to control the surface chemistry of Y-TZP in aqueous suspension to promote dispersion and permit aqueous processing of Y-TZP powders.  相似文献   

19.
Ionic conductivity measurements on a yttria-stabilized tetragonal zirconia polycry stall alumina composite subjected to superplastic deformation demonstrate anisotropic character. Parallel to the pressing direction, the grain-boundary resistance to oxygen ion mobility is 25% to 30% higher than that measured perpendicular to the pressing direction. The same directional dependency on the volume conductivity is observed but is less pronounced, showing approximately a 9% difference. Microstructural evidence reveals an agglomeration and elongation of alumina particles perpendicular to the pressing direction, and it is suggested that this phenomenon restricts the passage of ions parallel to the compression direction, giving rise to the anisotropic nature of the conductivity measurements.  相似文献   

20.
The effect of hot isostatic pressing on the bend strength of ZrO2–3 mol% Y2O3 was critically dependent on the presintering process. Optimally sintered bodies contained no open porosity and exhibited large increases in strength following hot isostatic pressing. When open porosity of as little as 0.3% persisted after sintering, hot isostatic pressing increased the bulk density, but little or no increase in strength was realized. Two-parameter Weibull analysis of the strength data was used to quantify the strength improvement obtained following hot isostatic pressing. Typical fracture-initiating flaws were identified through optical and electron microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号