首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 70 毫秒
1.
王博  迟忠先  岳训 《计算机工程》2006,32(7):84-85,125
在传统网格密度方法的基础上,提出了一种新型的面向GIS系统的双层聚类算法CPDG。它结合了密度方法和划分方法的思想,能够准确、高效地同时发现两种性质的空间集簇。初步实验显示,该算法在同时发现空间对象的任意形状密集连通区域以及连通区域内部以密集中心为代表的若干近似圆形的予区域上有很好的效果。  相似文献   

2.
基于层次与划分方法的聚类算法研究   总被引:3,自引:1,他引:3  
针对在层次聚类算法中,一个分裂或合并被执行,就不能修正,其聚类质量受到限制的缺陷,提出了利用簇间相异度及基于信息熵或整体相似度的聚类质量评价标准,在簇分裂过程中动态的进行簇的合并与分裂的算法。仿真实验结果证明,该算法具有使结果簇更紧凑和独立的效果,具有更好的聚类质量。  相似文献   

3.
为了更好地实现聚类,在汲取传统的划分算法、层次算法特性的基础上,提出了一种新的基于划分和层次的混合聚类算法(MPH),该算法将聚类的过程分为分裂和合并两个阶段,在分裂阶段反复采用k-means算法,将数据集划分为多个同质的子簇,在合并阶段采用凝聚的层次聚类算法。实验表明,该算法能够发现任意形状、任意大小的聚类,并且对噪声点不敏感。  相似文献   

4.
提出采用K-means聚类分析方法对三维点云模型进行分割。论文指出,对于分布呈现类内团聚状三维点云模型,K均值聚类分割可以得到较好的结果。与三维网格模型的K均值聚类分割、点云模型的谱系聚类分割的实验结果比较证实了这一点。  相似文献   

5.
针对室内人员检测环境毫米波雷达点云数据特性,并考虑多目标点云密集复杂情况,提出一种毫米波雷达点云的密度和划分联合聚类方法。毫米波雷达点云数据具有稀疏、均匀性差的特征。首先采用基于 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)改进的参数自适应算法进行密度聚类,并对其存在的无限制密度扩张问题,通过决策树归类,对异常数据簇进行二次划分,保证了数据簇属性的单一性。试验结果表明,改进的密度聚类算法可自适应地寻找聚类过程中所需要的最佳参数并实现聚类,更适应毫米波雷达点云数据的特性,同时结合划分聚类对异常数据进行二次划分,使得聚类效果更加细腻和准确,实现了多目标密集情况下点云数据精准聚类划分的效果。  相似文献   

6.
在文本情感分析时,使用无监督的聚类方法,可以有效节省人力和数据资源,但同时也面临聚类精度不高的问题。相似性是文本聚类的主要依据,该文从文本相似度计算的角度,针对情感聚类中文本—特征向量的高维和稀疏问题,以及对评论文本潜在情感因素的表示问题,提出一种基于子空间的文本语义相似度计算方法(RESS)。实验结果表明,基于RESS的文本相似度计算方法,有效解决了文本向量的高维问题,更好地表达了文本间情感相似性,并获得较好的聚类结果。  相似文献   

7.
面向聚类的数据隐藏通常使用数据扰动技术防止敏感信息泄露。针对现有的面向聚类的数据扰动方法隐私保护度低的问题,提出一种基于平面反射的数据扰动方法,将发布对象的全部属性两两配对构成平面上的点,再随机选择一条直线,作每对属性关于直线的对称点,转换后的数据即为发布的数据。实验结果表明,这种方法具有较好的隐私保护度和聚类可用性,且对高维数据有良好的适应性。  相似文献   

8.
基于层次划分的最佳聚类数确定方法   总被引:20,自引:0,他引:20  
确定数据集的聚类数目是聚类分析中一项基础性的难题.常用的trail-and-error方法通常依赖于特定的聚类算法,且在大型数据集上计算效率欠佳.提出一种基于层次思想的计算方法,不需要对数据集进行反复聚类,它首先扫描数据集获得CF(clusteringfeature,聚类特征)统计值,然后自底向上地生成不同层次的数据集划分,增量地构建一条关于不同层次划分的聚类质量曲线;曲线极值点所对应的划分用于估计最佳的聚类数目.另外,还提出一种新的聚类有效性指标用于衡量不同划分的聚类质量.该指标着重于簇的几何结构且独立于具体的聚类算法,能够识别噪声和复杂形状的簇.在实际数据和合成数据上的实验结果表明,新方法的性能优于新近提出的其他指标,同时大幅度提高了计算效率.  相似文献   

9.
本文阐述了一种应用于大规模数据节点划分的改进网格密度峰值聚类算法.针对传统的密度峰值聚类算法距离矩阵计算时间长,人工选取阈值对聚类结果的影响较大,限制其在大规模数据集中的应用等缺点,本文采用基于自适应网格划分的密度峰值聚类,通过判断网格均衡来计算网格间距离,引入万有引力得到网格相对引力,通过极大值平均选取法自动得到密度...  相似文献   

10.
11.
针对非线性时间序列故障预报问题,提出了一种基于聚类和支持向量机的方法.将正常的时间序列按照K-均值聚类算法进行聚类学习,同时利用支持向量机回归的时间序列预测算法获得预测序列,然后通过比较聚类所得的正常原型和预测序列的相似性实现故障预报.仿真结果表明:本文提出的方法更能满足实时性的要求,也更为准确.  相似文献   

12.
13.
地质断层三维可视化模型的构建方法与实现技术   总被引:7,自引:0,他引:7  
朱良峰  潘信  吴信才  刘修国 《软件学报》2008,19(8):2004-2017
全面而系统地研究了地质断层三维可视化构模的原理、方法及实施过程.针对地质断层三维构模的特点与要求,设计了一种基于边界表示、面向地质实体并兼顾拓扑关系的三维矢量数据模型,以有效地组织和描述包含断层的复杂地质体几何结构模型.提出了断层与地层的统一构模技术,给出了在其实现过程中所遇到的关键问题(如断层面的推演拟合、地层层面重构、断层与地层的交切处理与局部重构)的解决方案.基于断层的属性、断层数据所反映的断层面的特征和质量,应用3种方法来拟合断层面.在地层层面重构时,考虑到了断层面在地层面网格加密、插值时的约束和屏蔽作用,实现了具有多值面的逆断层网格生成技术.应用三角网切割算法TRICUT来实现断层与地层的交切处理.通过北京奥运公园场区基岩地质模型中的断层构模实例验证了这些技术方法的有效性.  相似文献   

14.
对复杂地质体中的断层三维建模技术进行研究与讨论。分析断层三维数据来源给出数据空间模型;系统地对‘已有的断层三维建模的技术进行分析比较,在此基础上提出一种使用TIN和三棱柱混合数据模型的断层地质体建模技术,从而有效地解决了断层三维可视化问题。  相似文献   

15.
针对网络故障检测中利用先验知识不足和多数谱聚类算法需事先确定聚类数的问题,提出一种新的基于成对约束信息传播与自动确定聚类数相结合的半监督自动谱聚类算法。通过学习一种新的相似性测度函数来满足约束条件,改进NJW聚类算法,对非规范化的Laplacian矩阵特征向量进行自动谱聚类,从而提高聚类性能。在UCI标准数据集和网络实测数据上的实验表明,该算法较相关比对算法聚类准确率更高,可满足网络故障检测的实际需要。  相似文献   

16.
提出了一种基于四叉树K-均值聚类算法的软件故障预测算法.采用四叉树的目的包括利用四叉树寻找K-均值聚类算法所需要的聚类中心和利用四叉树来进行软件模块的故障预测.在这种算法中,输入门限参数决定了最初的聚类中心,通过改变门限参数,用户可以得到期望的聚类中心.采用了聚类收益这个新的标准来衡量算法的性能.通过仿真和比较,算法具有最高的聚类收益,且在大多数情况下,总体错误率比其他算法更低,从而表明了算法在软件故障预测中的有效性.  相似文献   

17.
为提高故障诊断模式分类的实时性和准确性,采用阈值化类内距离的方法,研究了一种新型SFCM聚类算法,数据验证了此算法较传统FCM算法在收敛速度和聚类精度方面的较好表现,以机载武器控制系统信息通道为诊断对象,采用该方法对通道进行了样本无监督分类验证和故障模式识别诊断试验,结果表明新型的SFCM聚类算法能对信息通道故障模式进行正确的分类识别。  相似文献   

18.
针对模糊聚类方法中存在冗余信息的问题,提出一种融合粗糙集属性约简和模糊等价关系的故障诊断方法,通过应用粗糙集属性约简算法对冗余数据的处理后再应用模糊等价关系聚类获取聚类结果。该方法与单采用模糊等价关系聚类法相比,不仅能够有效减少模糊等价关系矩阵求解中的迭代次数,而且获得聚类数也得到有效降低,并通过实例验证了该方法的有效性和高效性。  相似文献   

19.
提出了一种克隆选择和聚类的模拟电路故障诊断技术,该技术将克隆选择算法的全局寻优和模糊C-均值的局部寻优相结合,并利用模糊C-均值的目标函数去构造克隆选择算法的亲和力函数,可以减少特征空间中样本的相互重叠所产生的诊断不确定性,利于故障模式的定位。仿真结果和分析验证证明:该方法缩短了故障的分类器收敛时间,提高了故障诊断率。  相似文献   

20.
为了提高控制系统中传感器与执行器故障诊断的准确性,结合小波分析特征提取的优势和密度函数加权模糊C-均值聚类具有较好分类效果的特点,提出了一种新的控制系统故障诊断方法。该方法首先利用小波分析对故障信号进行特征提取,降低噪声的影响;然后对特征提取后的数据通过加权模糊C-均值聚类算法,对故障进行识别分类。实验表明,基于小波分析和加权模糊C-均值聚类相结合的方法,不仅可以识别不同部件的故障,而且可以对同一部件的不同类型的故障进行诊断。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号