首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A series of rare earth molybdates, Y2− x Eu x (MoO4)3 for x =0.4, 0.8, 1.2, 1.6 and 2.0 were prepared by solid-state method and their crystal structures, photo luminescent characteristics were investigated. The powders are mainly studied for their red light emission efficiency under near UV excitation. The crystal structures of the powders were found to depend on annealing temperature and the yttrium concentration. Mixtures of monoclinic ( C 2 /c ) and orthorhombic ( Pba 2, Pbna ) structures were formed in varying proportions depending on the value of x and annealing temperatures (700°–800°C). The luminescence behavior depended on the resultant composition of the crystal phase and the Eu3+ concentration. The excitation spectra showed the characteristic and broad O→Mo charge transfer (CT) band of the MoO4 tetrahedra and the sharp intra-configurational 4 f –4 f transitions of Eu3+ in the host lattice. The integrated emission ratio (5D07F2/5D07F1) of Eu3+ depends on the annealing temperature and reveals that the local site symmetry of Eu3+ ions decreases with increasing concentration of Eu3+. The emission spectra obtained by exciting at 396 nm, gave highest red emission intensity for Y0.4Eu1.6(MoO4)3 annealed at 700°C/6 h among this series of samples.  相似文献   

2.
Tm3+-Ho3+- and Tm3+-Ho3+-Eu3+-ion-codoped oxyfluoride transparent glass-ceramics containing PbF2 nanocrystals were prepared, and the near-infrared fluorescence properties of the Tm3+ ions were investigated for their potential use as a 1.4 μm amplifier. For all samples, the lifetime of the Tm3+:3 H 4 level increased with heat treatment because of the decrease of the phonon energy as PbF2 crystals were formed. Moreover, it was revealed that codoping with Ho3+ or Eu3+ was effective in suppressing the lifetime of the Tm3+:3 F 4 level by energy transfer to the Ho3+:5 I 7 or Eu3+:7 F 6 level. For the codoped samples, the heat treatments decreased the Tm3+:3 F 4 lifetime and increased the Tm3+:3 H 4 lifetime. This was attributed to the concentration of rare-earth ions in the fluoride crystallites. These properties improved the population inversion of the 1.4 μm transition.  相似文献   

3.
Tetragonal ( t ) ZrO2 nanoparticles have been obtained by a partial Eu3+→Zr4+ substitution, synthesized using a simple oxalate method at a moderate temperature of 650°C in air. The Eu3+ additive, 2 mol% used according to the optimal photoluminescence (PL), gives small crystallites of the sample. On raising the temperature further, the average crystallite size D grows slowly from 16 nm to a value as big as 49 nm at 1200°C. The Eu3+: t -ZrO2 nanoparticles have a wide PL spectrum at room temperature in the visible to near-IR regions (550–730 nm) in the 5D07FJ (Eu3+), J =1–4, electronic transitions. The intensity of the 5D07F4 group is as large as that of the characteristic 5D07F2 group of the spectrum in the forced electric-dipole allowed transitions. The enhanced t -ZrO2 phase stability and wide PL can be attributed to the combined effects of an amorphous Eu3+-rich surface and part of the Eu3+ doping of ZrO2 of small crystallites.  相似文献   

4.
Photochemical hole burning (PHB) not only can be applied for data storage systems but also serves as a powerful method for studying the local structure around optical centers. The present work investigated the effects of aluminum, magnesium, and silicon ions on hole burning and the phonon sideband for borate glasses that exhibit PHB at room temperature. Hole burning was measured for the 5 D 0−7 F 0 transition of Sm2+ and the phonon sideband spectrum for the 5 D 0-7 F 0 transition of Eu3+. The hole width was closely related to local structural change, especially as it seemed to decrease with decreases in the number of nonbridging oxygens produced around the rare-earth ions. In the case of sodium aluminoborate glasses, the hole width decreased considerably with increasing alumina content. The ratio Γihh for 85B2O3·10Al2O3·5Na2O·1Sm2O3 glass, then, was 80 at room temperature, the largest value ever reported.  相似文献   

5.
Transparent surface-crystallized glass-ceramics with molar compositions of 43SiO2–2B2O3–30SrO–25MgO–0.05Eu2O3–0.8Dy2O3 (sample GC-A) and 43SiO2–2B2O3–24SrO–6CaO–25MgO–0.05Eu2O3–0.8Dy2O3 (sample GC-B) were prepared by heat-treating the mother glasses at 850°C for 10 h. The precipitated phases in both glass-ceramics were (Sr1− x Ca x )2MgSi2O7, in which Eu2+ and Dy3+ ions were incorporated. Phosphorescence with emission peaks at 470 and 480 nm that is due to the 4 f 65 d –4 f 7 transition of Eu2+ ions was observed from samples GC-A and GC-B, respectively. The phosphorescence lasted for >5 h at room temperature.  相似文献   

6.
A series of novel red phosphors LiEu1− x Bi x (WO4)0.5(MoO4)1.5 ( x =0, 0.05, 0.10, 0.15, 0.20, 0.30, 0.40, and 0.50) were synthesized by the conventional solid-state reaction method. The spectrum and the crystal structure of the phosphors were characterized by Fluorescence spectrophotometry and X-ray diffraction, respectively. The photoluminescent results show that all samples can be excited efficiently by UV (396 nm) and blue (467 nm) light and that they emit red light at 615 nm with line spectra, which are coupled well with the characteristic emissions from UVLED and blue light-emitting diode (LED), respectively. There is an efficient energy transfer from Bi3+ to Eu3+ ions, leading to the emission intensity of Eu3+ being enhanced by 1.5 times, and even more when Bi3+ ions are introduced into LiEu (WO4)0.5(MoO4)1.5. The introduction of Bi3+ ions broadened the excitation band of the phosphor, and the optimum doping concentration is found to be 10 mol% of Bi3+.  相似文献   

7.
Spectroscopic properties and local structure of Eu3+ in Ge–Ga–S–CsBr (or CsCl) glasses were investigated using fluorescence measurements and several spectroscopic methods. Fluorescence from Eu3+:5D07F2 was observed only from glasses with CsBr/Ga ratios greater than unity and disappeared at temperatures above 140 K. Phonon sideband (PSB) spectra revealed that Eu3+ ions are located next to halogen ions, which form part of well-structured complexes such as EuCl3, tetrahedral [GaS3/2Cl], subunits and/or Ga2Cl6. These new bonds showed reduced coupling strength compared with Eu3+–S bonds in Ge–Ga–S glass. Fluorescence line narrowing experiments showed little site-to-site variation of Eu3+ ions.  相似文献   

8.
Eu2O3-doped aluminoborosilicate glasses were prepared in air at high temperature. Luminescence measurements were used to investigate a valence change from Eu3+ to Eu2+ ions in the aluminoborosilicate glasses. The results showed that the doped Eu3+ ions were partially reduced to Eu2+ in the Eu2O3:RO–Al2O3–B2O3–SiO2 (RO=CaO, SrO, BaO, Li2O) glasses, but not in the Eu2O3:RO–Al2O3–B2O3–SiO2 (RO=Na2O, K2O) glasses. The changes of Eu reduction with different RO components were discussed with the variation of optical basicity of RO and with different valency of R cations. The effects of co-doping BaO and ZnO in aluminoborosilicate glasses on Eu reduction were also investigated and discussed.  相似文献   

9.
We report here the processing and properties of transparent glass and glass–ceramic nanocomposites in the Li2O–Ta2O5–SiO2–Al2O3 system in the presence of Eu2O3 as luminescent probe. The formation of the LiTaO3 crystal phase, the crystallite size, and the morphology with the progression of heat treatment have been examined by X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transformed infrared reflectance spectroscopy measurements. The crystallite sizes obtained from XRD and TEM are found to increase with heat-treatment time and vary in the range of 2–20 nm. The measured photoluminescence spectra exhibit emission transitions of 5D0,17F j ( j =0, 1, 2, 3, and 4) of Eu3+ ions. From the nature of the emission transitions, the site symmetry in the vicinity of Eu3+ ions has been found to be near C3v in the glass–ceramic nanocomposites. An inverse correlation has been observed between the asymmetric ratio ( I ED/ I MD) of Eu3+ ions and the dielectric constant (ɛr), with an increase in the heat-treatment time of glass, which is caused by the dipole–dipole interaction.  相似文献   

10.
Rare-earth-doped oxynitride or nitride compounds have been reported to be luminescent and may then serve as new phosphors with good thermal and chemical stabilities. In this work, we report the photoluminescence (PL) spectra of europium-, terbium-, and praseodymium-doped Ca-α-SiAlON ceramics. The highly dense ceramics were prepared by hot pressing at 1750°C for 1 h under 20 MPa in a nitrogen atmosphere. Europium-doped Ca-α-SiAlON displayed a single broad emission band peaking at λ= 550–590 nm depending on the europium concentration. The emission bands in the spectra of europium-doped Ca-α-SiAlONs were assigned to the allowed transition of Eu2+ from the lowest crystal field component of 4 f 65 d to 8S7/2 (4 f 7) ground-state level. The emission spectra of terbium- and praseodymium-doped Ca-α-SiAlON ceramics both consisted of several sharp lines, which were attributed to the 5D47F j ( j = 3, 4, 5, 6) transitions of Tb3+ and 3P03H j ( j = 3, 4, 5) transitions of Pr3+, respectively. In particular, the terbium-doped α-SiAlON ceramics showed a strong green emission among these phosphors.  相似文献   

11.
Compositional dependence of spontaneous emission probabilities between initial 4 F 3/2 and terminal 4 I J J = 9/2, 11/2, 13/2, 15/2) levels of Nd3+ were studied for about 90 samples of silicate, borate, and phosphate glasses using the Judd–Ofelt theory. The effect of the covalency of the Nd–O bond on the magnitude of intensity parameters was estimated from the variation of spectral profiles of the 4 I 9/24 G 5/2, 2 G 7/2 and 4 F 7/2, 4 S 3/2 transitions. Intensity parameters Ω4 and Ω6 and the spontaneous emission probabilities were strongly affected by the ionic packing ratio of the glass host. The results were discussed in terms of the site selectivity of Nd3+ ions in glasses.  相似文献   

12.
Excitation of Tm3+ to 3 H 4 using the 791 nm pump source showed the frequency up-converted blue emission (∼480 nm) due to the Tm3+:1 G 43 H 6 transition in Tm3+/Nd3+ codoped CaO·Al2O3 glasses. Intensity and lifetime changes with rare-earth concentrations suggested the efficient energy transfer of Tm3+:3 H 4→ Nd3+:4 F 5/2 and Nd3+:4 F 3/2→ Tm3+:1 G 4. The latter transfer enabled Tm3+ to reach its 1 G 4 level, and the blue emission became possible through the 1 G 43 H 6 transition. Quantitative analysis with rate equations proved that these two transitions were the most efficient among all the possible energy transfer routes between Tm3+ and Nd3+. Calculated up-conversion efficiency of the Tm3+/Nd3+ combination in CaO·Al2O3 glass was 6.6 × 10−3, and it was ∼4 orders of magnitude larger than those reported for other oxide glasses.  相似文献   

13.
Judd-Ofelt parameters Ω t with t = 2,4, 6 for the rare-earth ions Pr3+, Nd3+, Sm3+, Tb3+, Dy3+, Ho3+, Er3+, and Tm3+ in alkali and/or alkaline-earth silicate, borate, and phosphate glasses have been determined. The variations of Ω t with the number of 4 f electrons of the rare-earth ions are demonstrated, and factors affecting the Judd-Ofelt parameter Ω6are discussed. The intensity parameter Ω6 depends on the ionic packing ratio of the glass host by changing modifier type in silicate and borate glasses, and it is independent of that in a series of borate glasses as a function of modifier content and phosphate glasses. The peak wavenumbers of the transitions whose intensities are determined mainly by the Ω6<| U (6)|>2 term—where <| U (6)|> is one of the reduced matrix elements—shift systematically with the values of Ω6 for all the rare-earth ions.  相似文献   

14.
SiO2–Al2O3–Eu2O3 glasses were prepared for the composition 50siO2·(50 – x )Al2O3·xEu2O3, and their density, sound velocity, and elastic modulus were measured. The chemical shift of the AIK a band emission spectra and the isomer shift of 151Eu by Mössbauer effect were obtained to determine the coordination states of Al3+ and Eu3+ ions in these glasses. It was found that the coordination number of Eu3+ ions was 12 and that the average coordination number of A13+ ions was almost 5 in these glasses. By introducing Eu2O3, the packing of constituent ions was strongly enhanced and the elastic modulus increased in this system. The compositional dependence of the molar volume and elastic modulus were explained by these states of high coordination number for Eu3+ and low coordination number for Al3+ ions compared with those in the corresponding M2O3 crystals.  相似文献   

15.
Sr3Al2O6, SrAl2O4, SrAl4O7, and SrAl12O19 that have been doped with Eu2+ and Dy3+ ions have been grown by a floating-zone technique for application as long-duration phosphors. Long-duration phosphorescence with a variety of colors has been observed in SrAl2O4, SrAl4O7, and SrAl12O19 crystals that have been doped with Eu2+ and Dy3+ ions. The peak wavelength of the phosphorescence is 520 nm for SrAl2O4, 480 nm for SrAl4O7, and 400 nm for SrAl12O19. The phosphorescence is characterized by decay times that have been analyzed by a curve-fitting technique.  相似文献   

16.
The ion-exchange behavior of hydroxyapatite (Ca10(PO4)6-OH)2) (HAp), fired at high temperatures, has been investigated in the strongly acidic region (pH 2 and 3). According to the present study, HAp fired above 1000°C can exchange ions from Ca2+ to Pb2+, even at pH 2, without dissolution. The molar ratios of Pb2+/Ca2+ after ion exchange are approximately unity in all cases. Ion exchange occurs in a thin layer near the surface of HAp particles fired at 1300°C. After ion exchange, Pb-Cl-apatite crystals are created in the strongly acidic region (pH 2).  相似文献   

17.
A feasible doping strategy is introduced to synthesize Eu2+-doped α-Si3N4 nanowires coated with a thin BN film. The nanowires were characterized by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, and a fluorescence spectrophotometer. The Eu2+-doped α-Si3N4 nanowires emitted strong yellow light, which is related to the 4 f 65 d –4 f 7 transition of Eu2+, upon a broad excitation wavelength range between 250 and 450 nm. The obtained nanowires provided a potential candidate for application in optical nanodevices, as well as in white LEDs.  相似文献   

18.
Fluorescence emissions at both 1.31 and 1.55 μm communication windows were observed from Pr3+/Er3+ codoped Ge-As-Ga-S glasses with a single wavelength pumping at 986 nm. The lifetime of the Er3+:4 I 11/2 level decreased as the Pr3+ concentration increased, and that of the Pr3+:1 G 4 level increased as the Er3+ concentration increased. Energy transfer from the Er3+:4 I 11/2 level to the Pr3+:1 G 4 level was responsible for emission of the 1.31 μm fluorescence from the Pr3+:1 G 4 level. Ge-As-Ga-S glasses that have been doped with Pr3+ and Er3+ cations are promising amplifier materials for both 1.31 and 1.55 μm communication windows.  相似文献   

19.
Point defects were found in as-quenched GeO2, 65CaO35Al2O3, and 65SrO35Ga2O3 glasses on the basis of electron paramagnetic resonance (EPR) measurements. These defects were identified as Ge É centers in GeO2 glass and O-2, O-3, and M-OHC (oxygen hole center) (where M = Al, Ga) in 65CaO35Al2O3 and 65SrO35Ga2O3 glasses. The formation of Ge É centers in as-quenched GeO2 glass was due to the thermodynamic stability of GeO at the melting temperature. The latter oxygen-excess defects are supposed to be formed by excess oxygen ions derived from the modifiers in the aluminate and gallate glasses during the formation of these glasses. To investigate some of the properties of the oxygen-excess defects in the calcium aluminate and strontium gallate glasses, chromium ions were doped in these glasses as a probe and the relationship between the valency state of the chromium ion and the defects was determined. We conclude that the peroxy bonding (-O-O-) oxidizes the Cr3+ species to Cr4+. Similar defects have been identified in host compounds that are used for Cr4+ tunable lasers. These results reveal that the point defects are necessary to stabilize the Cr4+ ions in glasses and crystals.  相似文献   

20.
Blue up-conversion fluorescence from the Tm3+:1 G 43 H 6 (480 nm) transition has been observed from calcium aluminate glass codoped with Tm3+/Nd3+. The mechanism for the up-conversion process consists of a two-photon process. An excitation beam with a wavelength of 791 nm first excites Tm3+ to the 3 H 4 level, where Tm3+ again absorbs the 1060 nm emission from Nd3+:4 F 3/24 I 11/2 to attain the Tm3+:1G4 level. Lifetime and intensity variations with compositions suggest the presence of an efficient energy transfer from Nd3+ to Tm3+. The highest 480 nm emission intensity has been obtained from the glass with 0.1 mol% of Nd2O3 and 0.2 mol% of Tm2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号