首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Groundwater contaminant plumes from recent accidental gasoline releases often contain the fuel oxygenate MTBE (methyl tert-butyl ether) together with BTEX (benzene, toluene, ethylbenzene, o-xylene, m-xylene and p-xylene) compounds. This study evaluates substrate interactions during the aerobic biotransformation of MTBE and BTEX mixtures by a pure culture, PM1, capable of utilizing MTBE for growth. PM1 was unable to degrade ethylbenzene and two of the xylene isomers at concentrations of 20 mg/L following culture growth on MTBE. In addition, the presence of 20 mg/L of ethylbenzene or the xylenes in mixtures with MTBE completely inhibited MTBE degradation. When MTBE-grown cells of PM1 were exposed to MTBE/benzene and MTBE/toluene mixtures, MTBE degradation proceeded, while the degradation of benzene and toluene was delayed for several hours. Following this initial lag, benzene and toluene were degraded rapidly, while the rate of MTBE degradation slowed significantly. MTBE degradation did not increase to previous rates until benzene and toluene were almost entirely degraded. The lag in benzene and toluene degradation was presumably due to the induction of the enzymes necessary for BTEX degradation. Once these enzymes were induced, sequential additions of benzene or toluene were degraded rapidly, and growth on benzene and toluene was observed. The results of this study suggest that BTEX and MTBE degradation occurs primarily via two independent and inducible pathways. If subsurface microbial communities behave similarly to the culture used in this study, the observed severe inhibition of MTBE degradation by ethylbenzene and the xylenes and the partial inhibition by benzene and toluene suggest thatthe biodegradation of MTBE in subsurface environments would most likely be delayed until MTBE has migrated beyond the BTEX plume.  相似文献   

2.
Benzene, toluene, ethylbenzene, o-, m-, and p-xylenes (BTEX), and polycyclic aromatic hydrocarbons (PAHs) were extracted from eight manufactured gas plant (MGP) soils from sites that had been abandoned for several decades. Supercritical fluid extraction (SFE) with pure carbon dioxide demonstrated the presence of BTEX compounds that were highly sequestered in both coal gas and oil gas MGP soils and soots. Benzene was generally the slowest compound to extract from all samples and was even more difficult to extract than most two- to five-ring PAHs found on the same samples. Since the solubility of benzene in carbon dioxide is 2-5 orders of magnitude higher than the solubilities of PAHs, these results demonstrate that benzene was more tightly sequestered than toluene, ethylbenzene, xylenes, or the multi-ring PAHs. Additional evidence for very tight binding was based on the fact that BTEX concentrations determined using either SFE or with methylene chloride sonication were much higher than those obtained by the U.S. EPA purge-and-trap method, especially for benzene (whose concentration was underestimated by as much as 1000-fold by the EPA method). However, soil/water desorption showed little benzene mobility, and Kd values for benzene were 1-2 orders of magnitude higher than those calculated based on literature sorption K(OC) values. These results indicate that environmentally relevant concentrations of benzene may be better represented by mild extraction methods than by methods capable of extracting tightly bound benzene.  相似文献   

3.
The sorption and degradation of the chlorinated ethenes tetrachloroethene (PCE, 5 mg L(-1)) and trichloroethene (TCE, 10 mg L(-1)) were investigated in zero-valent iron systems (ZVI, 100 g L(-1)) in the presence of compounds common to contaminated groundwater with varying physicochemical properties. The potential competitors were chlorinated ethenes, monocyclic aromatic hydrocarbons, and humic acids. The effect of a complex matrix was tested with landfill contaminated groundwater. Nonlinear Freundlich isotherms adequately described chloroethene sorption to ZVI. In the presence of the more hydrophobic PCE (5 mg L(-1)), TCE sorption and degradation decreased by 33% and 30%, respectively, while TCE (10 mg L(-1)) decreased PCE degradation by 30%. In the presence of nonreactive hydrophobic hydrocarbons (i.e., benzene, toluene, and m-xylene at 100 mg L(-1)), TCE and PCE sorption decreased by 73% and 55%, respectively. The presence of the hydrocarbons had no effect on TCE degradation and increased PCE reduction rates by 50%, suggesting that the displacement of the chloroethenes from the sorption sites by the aromatic hydrocarbons enhanced the degradation rates. Humic acids did not interfere significantly with chloroethene sorption or with TCE degradation but lowered PCE degradation kinetics by 36% when present at high concentrations (100 mg L(-1)). The landfill groundwater with an organic carbon content of 109 mg L(-1) C had no effect on chloroethene sorption but inhibited TCE and PCE degradation by 60% and 70%, respectively.  相似文献   

4.
In this 10 year study, Brazilian gasoline (100 L, containing 24% ethanol by volume) was released to a sandy aquifer to evaluate the natural attenuation of benzene, toluene, ethylbenzene, and total xylenes (BTEX) in the presence of ethanol. Groundwater concentrations of BTEX, ethanol, and degradation products (e.g., acetate and methane) were measured over the entire plume using an array of monitoring well clusters, to quantify changes in plume mass and region of influence. Ethanol biodegradation coincided with the development of methanogenic conditions while acetate (a common anaerobic metabolite) accumulated. The benzene plume expanded beyond the 30 m long monitored area and began to recede after 2.7 years, when ethanol had disappeared. Theoretical calculations suggest that the transient accumulation of acetate (up to 166 mg L(-1)) may have hindered the thermodynamic feasibility of benzene degradation under methanogenic conditions. Yet, benzene removal proceeded relatively fast compared to literature values (and faster than the alkylbenzenes present at this site) after acetate concentrations had decreased below inhibitory levels. Thus, site investigations of ethanol blend releases should consider monitoring acetate concentrations. Overall, this study shows that inhibitory effects of ethanol and acetate are relatively short-lived, and demonstrates that monitored natural attenuation can be a viable option to deal with ethanol blend releases.  相似文献   

5.
Settling particles and underlying sediments collected at 1, 2.5 and 4 km off the metropolitan Buenos Aires coast were analyzed to evaluate the sources and accumulation of resolved (RES), unresolved (UCM), and biomarker aliphatic hydrocarbons. Sedimentary aliphatic concentrations (RES 0.11-14 microg x g(-1); UCM 0.1-800 microg x g(-1)) included variability associated with north-south gradients and an exponential offshore reduction. Highest concentrations were registered close to Buenos Aires port and sewer, compared to cleaner northern stations and southward sites affected by a seaward residue transport. Sediment traps deployed in the sewer area revealed large hydrocarbon (38 and 319 mg x m(-2) x day(-1), RES and UCM) and total organic carbon fluxes (29 +/- 26 g x m(-2) x day(-1). The composition of RES and hopanes evaluated by principal component analysis indicated a consistent offshore gradient defined bythe relative contribution of lower vs higher molecular weight components. Distant sites showed decreasing proportions of petrogenic n-C(17-26) alkanes, isoprenoids, and C(20-27) terpanes and relative enrichment of n-C(27,29,31,33) terrestrial plant alkanes and C(31-33) homohopanes. Sediment hydrocarbon profiles showed an average 2-fold reduction down to 20 cm depth with preferential removal of lower molecular weight components and enrichment of n-C(23-35) alkanes and hopanes. Sediment inventories and trap depositional fluxes indicate the accumulation of 5800-9700 tons of aliphatic hydrocarbons in the top 0-5 cm sediments with a strong interfacial alteration and selective preservation of refractory components: n-C(13-22) (1.0%) < isoprenoids (3.2%) < n-C(23-35) (6.1%) < hopanes (47%) approximately UCM (50%), compared to intermediate stability of organic carbon (12%) and quantitative preservation of polychlorinated biphenyls (PCBs) (91%).  相似文献   

6.
To investigate the migration behaviors of hydrocarbons through a compacted organobentonite and to evaluate the effectiveness of this material as a liner for gasoline storage tanks, a demonstration-scale permeability test with detailed core sampling and mass balance of gasoline were developed for laboratory investigation. Results from this demonstration-scale test show that organobentonite not only effectively prevents the advective migration of hydrocarbons but also retards the transport of hydrocarbons. Due to the effect of surface tension between gasoline and water, the movement of gasoline through organobentonite is impeded by the repellence of molding water. It is also found that benzene has the highest mobility and is the least attenuated among the four hydrocarbons of interest (benzene, toluene, ethylbenzene, and xylene isomers; i.e., BTEX). The effluent concentrations of BTEX in the water phase are generally not very high. Moreover, substantial amounts of hydrocarbons, up to 150% of the dry weight of the organobentonite, can be retained in the compacted liner. This indicates that compacted organobentonite can also act as an adsorbent to attenuate organic contaminants.  相似文献   

7.
Techniques for detecting and quantifying anaerobic transformations of benzene, toluene, ethylbenzene, and xylene (BTEX) are needed to assess the feasibility of using in situ bioremediation to treat BTEX-contaminated groundwater aquifers. Deuterated surrogates of toluene (toluene-d8) and xylene (o-xylene-d10) were injected into BTEX-contaminated aquifers during single-well push-pull tests to monitor for the in situ formation of deuterated benzylsuccinic acid (BSA-d8) and o-methyl-BSA-d10. Test solutions (250 L) containing toluene-d8 (9-22 microM) and o-xylene-d10 (4-9 microM) along with a conservative bromide tracer (1.3 mM) and nitrate (4 mM) as an electron acceptor were injected into four wells at two sites. Detection of BSA-d8 and o-methyl-BSA-d10 in groundwater samples collected from the same wells following injection unequivocally demonstrated anaerobic in situ toluene-d8 and o-xylene-d10 transformation with calculated zero-order formation rates ranging from 1.0 to 7.4 nM/day. Concurrent utilization of co-injected nitrate was rapid in all tests at both sites, with zero-order rates ranging from 13 to 39 microM/h. The field tests conducted in this study represent the first reported use of deuterated aromatic hydrocarbons to detect and quantify anaerobic BTEX transformation product formation in the subsurface.  相似文献   

8.
吹扫捕集-气质联用法测定天然饮用水中挥发性有机物   总被引:1,自引:0,他引:1  
采用吹扫捕集-气相色谱/质谱联用法,测定天然饮用水中35种挥发性有机化合物,包括三卤甲烷、卤代苯类、苯系物以及多环芳烃类等。方法检出限范围为0.05~0.17μg/L,35种有机物加标5μg/L测定回收率为86.5%~113%,RSD(n=6)为1.6%~6.1%。调研了市售的44个瓶装天然饮用水和5个水源水样品:瓶装天然饮用水中检出1,2-二氯乙烷、一氯二溴甲烷、二氯一溴甲烷、三溴甲烷、苯、三氯甲烷、1,2,4-三甲苯、甲苯共8个化合物,其中三氯甲烷的检出率达到49%,但检测结果均在相关标准的限量要求范围内;水源水样品中均未测得挥发性有机化合物。  相似文献   

9.
This study evaluated the effects of various combinations of fuels and emission control technologies on exhaust emissions from a heavy-duty diesel engine tested on an engine dynamometer. Ten fuels were studied in twenty four combinations of fuel and emission control technology configurations. Emission control systems evaluated were diesel oxidation catalyst (DOC), continuously regenerating diesel particulate filter (CRDPF), and the CRDPF coupled with an exhaust gas recirculation system (EGRT). The effects of fuel type and emission control technology on emissions of benzene, toluene, ethylbenzene, xylene (BTEX), and 1,3-butadiene, elemental carbon and organic carbon (EC/OC), carbonyls, polycyclic aromatic hydrocarbons (PAHs), and nitro-PAHs (n-PAHs) are presented in this paper. Regulated gaseous criteria pollutants of total hydrocarbons (THC), carbon monoxide (CO), oxides of nitrogen (NO(x)) and particulate matter (PM) emissions have been reported elsewhere. In general, individual unregulated emission with a CRDPF or an EGRT system is similar (at very low emission level) or much lower than that operating solely with a DOC and choosing a "best" fuel. The water emulsion PuriNO(x) fuel exhibited higher BTEX, carbonyls and PAHs emissions compared to other ultralow sulfur diesel (ULSD) fuels tested in this study while n-PAH emissions were comparable to that from other ULSD fuels. Naphthalene accounted for greater than 50% of the total PAH emissions in this study and there was no significant increase of n-PAHs with the usage of CRDPF.  相似文献   

10.
Oxidation of aromatic and saturated aliphatic hydrocarbons (c = 10(-3)-10(-5) mol L(-1)) by the hydroxyl radicals, photochemically produced from hydrogen peroxide (c = 10(-1)-10(-5) mol L(-1)), in frozen aqueous solutions was investigated in the temperature range of -20 to -196 degrees C. While aromatic molecules (benzene, phenol, naphthalene, naphthalen-2-ol, or anthracene) underwent primarily addition-elimination reactions to form the corresponding hydroxy compounds, saturated hydrocarbons (cyclohexane, butane, methane) were oxidized to alcohols or carbonyl compounds via hydrogen abstraction and termination reactions. The results suggest that these photoreactions, taking place in a highly concentrated liquid or solidified layers covering the ice crystals, are qualitatively similar to those known to occur in liquid aqueous solutions; however, that probability of any bimolecular reaction in the environment ultimately depends on organic contaminant concentrations and oxidants availability at specific locations of the ice matrix, temperature, wavelength, and photon flux. They, moreover, support hypotheses that oxidation of organic impurities in the snowpack can produce volatile hydroxy and carbonyl compounds, which may consequently be released to the atmosphere.  相似文献   

11.
Four sediment cores were collected in fine-grained depositional areas of the southern basin of Lake Michigan. Spatial variations of aliphatic hydrocarbons in surficial sediments were consistent with a lakeward movement of riverine sediments in a series of resuspension-settling cycles in which an unresolved complex mixture (UCM) of hydrocarbons associated with dense sediments is deposited in nearshore areas, fine-grained sediments of terrestrial origin accumulate in the deep basin, and planktonic hydrocarbons are depleted by microbial degradation during transport to the deep basin. The rate of accumulation of the UCM (a marker of petroleum residues) in deep basin sediments has increased by more than an order of magnitude since 1880, from 60 microg m(-2) x a(-1) to approximately 960 microg m(-2) x a(-1) in 1980. Crude estimates of the atmospheric loading of the UCM (1100 microg m(-2) x a(-1)) indicate that accumulations in deep-basin sediments might be supported by atmospheric deposition. Agreement was poor between the atmospheric flux of the terrestrial n-alkanes (sigmaC25, C27, C29, C31) to the deep basin (3200 microg m(-2) x a(-1)) and the sediment accumulation rate (660 microg m(-2) x a(-1)). Understanding of atmospheric fluxes, estimated from the very few available data, would be improved by more frequent measurement of the levels of aliphatic hydrocarbons in air and precipitation and a better knowledge of the particle deposition velocities and precipitation scavenging coefficients.  相似文献   

12.
Pure water has been used to dechlorinate aliphatic organics without the need for catalysts or other additives. Dehydrohalogenation (loss of HCI with the formation of a double bond) occurred at temperatures as low as 105-200 degrees C for 1,1,2,2-tetrachloroethane, lindane (1,2,3,4,5,6-hexachlorocyclohexane, gamma-isomer), and dieldrin (1,2,3,4,10,10-hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a-octahydro-endo, exo-1,4:5,8-dimethanonaphthalene). Complete loss of the parent compounds was achieved in less than 1 h at 150, 200, and 300 degrees C for 1,1,2,2-tetrachloroethane, lindane, and dieldrin, respectively. The initial dechlorination of lindane had an activation energy of 84 kJ mol(-1) with an Arrhenius pre-exponential factor of 1.5 x 10(6) s(-1). Dehydrohalogenation of lindane formed trichlorobenzenes, followed by subsequent hydrolysis and hydride/chloride exchange to form chlorophenols, lower chlorobenzenes, and phenol as the major final product. Reaction of poly(vinyl chloride) at 300 degrees C for 1 h formed aromatic hydrocarbons ranging from benzene to anthracene and a char residue with a ca. 1:1 carbon-to-hydrogen ratio (mol/mol). The residue contained <1 wt % of chlorine compared to 57 wt % chlorine in the original polymer. All compounds tested yielded chloride ion as the major product (at higher temperatures), indicating that complete dechlorination of some aliphatic organochlorines may be feasible.  相似文献   

13.
Microbial metabolism of residual hydrocarbons, primarily short-chain n-alkanes and certain monoaromatic hydrocarbons, in oil sands tailings ponds produces large volumes of CH(4) in situ. We characterized the microbial communities involved in methanogenic biodegradation of whole naphtha (a bitumen extraction solvent) and its short-chain n-alkane (C(6)-C(10)) and BTEX (benzene, toluene, ethylbenzene, and xylenes) components using primary enrichment cultures derived from oil sands tailings. Clone libraries of bacterial 16S rRNA genes amplified from these enrichments showed increased proportions of two orders of Bacteria: Clostridiales and Syntrophobacterales, with Desulfotomaculum and Syntrophus/Smithella as the closest named relatives, respectively. In parallel archaeal clone libraries, sequences affiliated with cultivated acetoclastic methanogens (Methanosaetaceae) were enriched in cultures amended with n-alkanes, whereas hydrogenotrophic methanogens (Methanomicrobiales) were enriched with BTEX. Naphtha-amended cultures harbored a blend of these two archaeal communities. The results imply syntrophic oxidation of hydrocarbons in oil sands tailings, with the activities of different carbon flow pathways to CH(4) being influenced by the primary hydrocarbon substrate. These results have implications for predicting greenhouse gas emissions from oil sands tailings repositories.  相似文献   

14.
Uranium-containing precipitates have been observed in a dolomitic gravel fill near the Department of Energy (DOE) S-3 Ponds former waste disposal site as a result of exposure to acidic (pH 3.4) groundwater contaminated with U (33 mg L(-1)), Al3+ (900 mg L(-1)), and NO3- (14 000 mg L(-1)). The U containing precipitates fluoresce a bright green under ultraviolet (UV) short-wave light which identify U-rich coatings on the gravel. Scanning electron microscopy (SEM) microprobe analysis show U concentration ranges from 1.6-19.8% (average of 7%) within the coatings with higher concentrations at the interface of the dolomite fragments. X-ray absorption near edge structure spectroscopy (XANES) indicate that the U is hexavalent and extended X-ray absorption fine structure spectroscopy (EXAFS) shows that the uranyl is coordinated by carbonate. The exact nature of the uranyl carbonates are difficult to determine, but some are best described by a split K(+)-like shell similar to grimselite [K4Na(UO2)(CO3)3 x H2O] and other regions are better described by a single Ca(2+)-like shell similar to liebigite [Ca2(UO2)(CO3)3 x 11(H2O)] or andersonite [Na2CaUO2(CO3)3 x 6H2O]. The U precipitates are found in the form of white to light yellow cracked-formations as coatings on the dolomite gravel and as detached individual precipitates, and are associated with amorphous basalumnite [Al4(SO4)(OH)10 x 4H2O].  相似文献   

15.
Naphtha, comprising low molecular weight aliphatics and aromatics (C3-C14), is used as a diluent in processing of bitumen from oil sands. A small fraction (<1%) is lost to tailings waste and incorporated into mature fine tailings (MFT). BTEX (benzene, toluene, ethylbenzene, and xylenes) and whole naphtha were assessed for biodegradation under methanogenic conditions using MFT from an oil sands tailings settling basin. MFT spiked with 0.05-0.1% w/v of BTEX compounds produced up to 2.1 (+/-0.1) mmol of methane during 36 weeks of incubation. Metabolism of 0.5-1.0% w/v naphtha in MFT yielded up to 5.7 (+/-0.2) mmol of methane during 46 weeks of incubation. Gas chromatographic analyses showed that BTEX degraded in the sequence: toluene > o-xylene > m- plus p-xylene > ethylbenzene > benzene. Only 15-23% of whole naphtha, mainly n-alkanes (in the sequence: nonane > octane > heptane) and some BTEX compounds (toluene > o-xylene > m-xylene), was metabolized. Other naphtha constituents, such as iso-paraffins and naphthenes, remained unchanged during this period. These results suggest that the microbial communities in the MFT can readily utilize certain fractions of unrecovered naphtha in oil sands tailings and support methanogenesis in settling basins. Current study findings could influence extraction process, MFT management, and reclamation options.  相似文献   

16.
Liquefied petroleum gas (LPG) is increasingly being examined as an alternative to gasoline use in automobiles as interest grows in reducing air pollutant emissions. In this study, emissions of regulated (CO, THC, NO(x)) and unregulated air pollutants, including CO2, particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), and BTEX (acronym for benzene, toluene, ethylbenzene, xylene), were measured before and after conversion of nine gasoline-powered automobiles to LPG/ gasoline dual-fuel retrofits. The tests were conducted on a standard chassis dynamometer in accordance with the United States Environmental Protection Agency FTP-75 test procedure, with the exception that all tests were conducted under hot-start driving conditions. The influences of LPG on air pollutant emission levels and carcinogenic potency were investigated and compared with gasoline. The results showed average emission factors of 0.14 g/km, 0.33 mg/km, 0.09 g/km, 0.44 g/km, and 197 g/km for CO, THC, NO(x), PM, and CO2, respectively, for LPG/ gasoline dual-fuel retrofits. Paired-sample t-test results indicated that the emissions of CO (p = 0.03), THC (p = 0.04), and CO2 (p = 4.6 x 10(-8)) were significantly reduced with the retrofit in comparison with gasoline-powered automobiles. The reduction percentages were 71%, 89%, and 14% for CO, THC, and CO2, respectively. The average total PAH emission factor for LPG was 217 microg/km, which is significantly lower than gasoline (863 microg/km; p = 0.05). The PAH corresponding carcinogenicities (BaP(eq)) were calculated via toxic equivalencies based on benzo(a)pyrene (BaP). Paired-sample t-test results fortotal BaP(eq) emissions showed no significant difference between gasoline (30.0 microg/km) and LPG (24.8 microg/km) at a confidence level of 95%. The discrepancy between PAH and BaP(eq) emissions resulted from the higher emission percentages of high molecular weight PAHs for LPG, which might be from lubricant oil. The average emission factors of benzene, toluene, ethylbenzene, and xylene were 351, 4400, 324, and 1100 microg/ km, respectively, with LPG as fuel, which were all significantly lower than those for gasoline (95% confidence level). The average reduction percentages were 78%, 61%, 57%, and 58% for benzene, toluene, ethylbenzene, and xylene, respectively.  相似文献   

17.
Concerns have been raised about whether the Deepwater Horizon oil spill cleanup workers experienced adverse health effects from exposure to airborne benzene, toluene, ethylbenzene, and xylene (BTEX) which volatilized from surfaced oil. Thus, we analyzed the nearly 20 000 BTEX measurements of breathing zone air samples of offshore cleanup workers taken during the six months following the incident (made publicly available by British Petroleum). The measurements indicate that 99% of the measurements taken prior to capping the well were 32-, 510-, 360-, and 77-fold lower than the U.S. Occupational Safety and Health Administration's Permissible Exposure Limits (PELs) for BTEX, respectively. BTEX measurements did not decrease appreciably during the three months after the well was capped. Moreover, the magnitudes of these data were similar to measurements from ships not involved in oil slick remediation, suggesting that the BTEX measurements were primarily due to engine exhaust rather than the oil slick. To supplement the data analysis, two modeling approaches were employed to estimate airborne BTEX concentrations under a variety of conditions (e.g., oil slick thickness, wind velocity). The modeling results corroborated that BTEX concentrations from the oil were well below PELs and that the oil was not the primary contributor to the measured BTEX.  相似文献   

18.
Perfluoroethylcyclohexanesulfonate (PFECHS) is a cyclic perfluorinated acid (PFA) mainly used as an erosion inhibitor in aircraft hydraulic fluids. It is expected to be as recalcitrant to environmental degradation as aliphatic PFAs including perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS). For the first time, PFECHS is reported in top predator fish (相似文献   

19.
Land use regression (LUR) has been successfully used to assess the intraurban variability of air pollution. In the INMA (Environment and Childhood) Study, ambient nitrogen oxides (NO(x) and NO(2)) and aromatic hydrocarbons (BTEX) were measured at 57 sampling sites in Sabadell (northeast Spain). Multiple regression models were developed to predict residential outdoor concentrations in a cohortof pregnantwomen (n = 657), using geographic data as predictor variables. The models accounted for 68 and 69% of the variance in NO(x) and NO(2) levels, respectively, with four predictor variables (altitude, land coverage, and two road length indicators). These percentages of explained variability could be further improved by replacing the two road length indicators with an ordinal indicator (road type). To our knowledge, this is the first study using LUR to assess the intraurban variability of BTEX in Europe, with a model including altitude and source-proximity variables that explained 74% of the variance in BTEX levels. These models will be used to study the association between prenatal exposure to air pollution and adverse pregnancy outcomes and early childhhod effects in the cohort.  相似文献   

20.
Twenty-two benzene-utilizing bacteria were isolated from soil samples. Among them, three isolates were highly tolerant to benzene. They grew on benzene when liquid benzene was added to the basal salt medium at 10--90% (v/v). Taxonomical analysis identified the benzene-tolerant isolates as Rhodococcus opacus. One of the benzene-tolerant isolates, designated B-4, could utilize many aromatic and aliphatic hydrocarbons including benzene, toluene, styrene, xylene, ethylbenzene, propylbenzene, n-octane and n-decane as sole sources of carbon and energy. Strain B-4 grew well in the presence of 10% (v/v) organic solvents that it was capable of using as growth substrates. Genetic analysis revealed the benzene dioxygenase pathway is involved in benzene catabolism in strain B-4. A deletion-insertion mutant defective in the benzene dioxygenase large and small subunits genes (bnz A 1 and bnz A 2) was as tolerant to organic solvents as the wild-type strain B-4, suggesting that utilization or degradation of organic solvents is not essential for the organic solvent tolerance of R. opacus B-4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号