首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
The reductive dissolution of hematite (alpha-Fe2O3) was investigated in a flow-through system using AH2DS, a reduced form of anthraquinone-2,6-disulfonate (AQDS), which is often used as a model electron shuttling compound in studies of dissimilatory microbial reduction of iron oxides. Influent flow rate, pH, and Fe(II) and phosphate concentrations were varied to investigate the redox kinetics in a flow-through reactor. The hematite reduction rates decreased with increasing pH from 4.5 to 7.6 and decreased with decreasing flow rate. The rates also decreased with increasing influent concentration of Fe(II) or phosphate that formed surface complexes at the experimental pH. Mineral surface properties, Fe(II) complexation reactions, and ADDS sorption on hematite surfaces were independently investigated for interpreting hematite reduction kinetics. AH2DS sorption to hematite was inferred from the parallel measurements of AQDS and AH2DS sorption to alpha-Al2O3, a redox stable analog of alpha-Fe2O3. Decreasing Fe(ll) and increasing AH2DS sorption by controlling flow rate, influent pH, and Fe(II) and phosphate concentrations increased the rates of reductive dissolution. The rates were also affected by the redox reaction free energy when reductive dissolution approached equilibrium. This study demonstrated the importance of the geochemical variables for the reductive dissolution kinetics of iron oxides.  相似文献   

2.
The effect of zinc on the biological reduction of hematite (alpha-Fe2O3) by the dissimilatory metal-reducing bacterium (DMRB) Shewanella putrefaciens CN32 was studied in the presence of four natural organic materials (NOMs). Experiments were performed under non-growth conditions with H2 as the electron donor and zinc inhibition was quantified as the decrease in the 5 d extent of hematite bioreduction as compared to no-zinc controls. Every NOM was shown to significantly increase zinc inhibition during hematite bioreduction. NOMs were shown to alter the distribution of both biogenic Fe(II) and Zn(II) between partitioned (hematite and cell surfaces) and solution phases. To further evaluate the mechanism(s) of NOM-promoted zinc inhibition, similar bioreduction experiments were conducted with nitrate as a soluble electron acceptor, and hematite bioreduction experiments were conducted with manganese which was essentially non-inhibitory in the absence of NOM. The results suggest that Me(II)-NOM complexes may be specifically inhibitory during solid-phase bioreduction via interference of DMRB attachment to hematite through the formation of ternary Me(II)-NOM-hematite complexes.  相似文献   

3.
The effects of natural organic matter (NOM), ferrozine, and AQDS (anthraquinone-2,6-disulfonate) on the reduction of hematite (alpha-Fe2O3) by Shewanella putrefaciens CN32 were studied. It has been proposed that NOM enhances the reduction of Fe(III) by means of electron shuttling or by Fe(II) complexation. Previously both mechanisms were studied separately using "functional analogues" (AQDS for electron shuttling and ferrozine for complexation) and are presently compared with seven different NOMs. AQDS enhanced hematite reduction within the first 24 h of incubation, and this had been ascribed to electron shuttling. Most of the NOMs enhanced hematite reduction after 1 day of incubation indicating that these materials could also serve as electron shuttles. The effect of ferrozine was linear with concentration, and all of the NOMs exhibited this behavior. Fe(II) complexation only enhanced hematite reduction after sufficient Fe(II) had accumulated in the system. Fe(II) complexation appeared to alleviate a suppression of the hematite reduction rate caused by accumulation of Fe(II) in the system. Addition of Fe(II) to the hematite suspension, prior to inoculation with CN32, significantly inhibited hematite reduction and greatly diminished the effects of all of the organic materials, although some enhancement was observed due to addition of anthroquinone-2,6-disulfonate. These results demonstrate that NOM can enhance iron reduction by electron shuttling and by complexation mechanisms.  相似文献   

4.
Natural organic matter (NOM) enhancement of the biological reduction of hematite (alpha-Fe2O3) by the dissimilatory iron-reducing bacterium Shewanella putrefaciens strain CN32 was investigated under nongrowth conditions designed to minimize precipitation of biogenic Fe(II). Hydrogen served as the electron donor. Anthraquinone-2,6-disulfonate (AQDS), methyl viologen, and methylene blue [quinones with an Ew0 (pH 7) of 0.011 V or less], ferrozine [a strong Fe(II) complexing agent], and characterized aquatic NOM (Georgetown NOM or Suwannee River fulvic acid) enhanced bioreduction in 5-day experiments whereas 1,4-benzoquinone (Ew0 value = 0.280 V) did not. A linear relationship existed between total Fe(II) produced and concentrations of ferrozine or NOM but not quinones, except in the case of methylene blue. Such a linear relationship between Fe(II) and methylene blue concentrations could be due to the systems being far undersaturated with respect to methylene blue or the loss of the thermodynamic driving force. A constant concentration of AQDS and variable concentrations of ferrozine produced a linear relationship between total Fe(II) produced and the concentration of ferrozine. Enhancement effects of both AQDS and ferrozine were additive. NOM may serve as both an electron shuttle and an Fe(II) complexant; however, the concentration dependence of hematite reduction with NOM was more similar to ferrozine than quinones. NOM likely enhances hematite reduction initially by electron shuttling and then further by Fe(II) complexation, which prevents Fe(II) sorption to hematite and cell surfaces.  相似文献   

5.
The rates of microbial Fe(III) reduction of three sizes of hematite nanoparticles by Geobacter sulfurreducens were measured under two H2 partial pressures (0.01 and 1 atm) and three pH (7.0, 7.5, and 8.0) conditions. Hematite particles with mean primary particle sizes of 10, 30, and 50 nm were synthesized by a novel aerosol method that allows tight control of the particle size distribution. The mass-normalized reduction rates of the 10 and 30 nm particles were comparable to each other and higher than the rate for the 50 nm particles. However, the surface area-normalized rate was highest for the 30 nm particles. Consistent with a previously published model, the reduction rates are likely to be proportional to the bacteria-hematite contact area and not to the total hematite surface area. Surface area-normalized iron reduction rates were higher than those reported in previous studies, which may be due to the sequestration of Fe(II) through formation of vivianite. Similar initial reduction rates were observed under all pH and H2 conditions studied.  相似文献   

6.
Microbial dissimilatory iron reduction (DIR) is an important pathway for carbon oxidation in anoxic sediments, and iron isotopes may distinguish between iron produced by DIR and other sources of aqueous Fe(II). Previous studies have shown that aqueous Fe(II) produced during the earliest stages of DIR has delta56Fe values that are 0.5-2.0%o lowerthan the initial Fe(III) substrate. The new experiments reported here suggest that this fractionation is controlled by coupled electron and Fe atom exchange between Fe(II) and Fe(III) at iron oxide surfaces. In hematite and goethite reduction experiments with Geobacter sulfurreducens, the 56Fe/54Fe isotopic fractionation between aqueous Fe(II) and the outermost layers of Fe(III) on the oxide surface is approximately -3%o and can be explained by equilibrium Fe isotope partitioning between reactive Fe(II) and Fe(III) pools that coexist during DIR. The results indicate that sorption of Fe(II) to Fe(III) substrates cannot account for production of low-delta56Fe values for aqueous Fe(II) during DIR.  相似文献   

7.
Electron transfer and atom exchange (ETAE) between aqueous Fe(II) and Fe(III) oxides induces surface growth and dissolution that affects trace element fate and transport. We have recently demonstrated Ni(II) cycling through goethite and hematite (adsorbed Ni incorporates into the mineral structure and preincorporated Ni releases to solution) during Fe(II)-Fe(III) ETAE. However, the chemical parameters affecting net trace element release remain unknown. Here, we examine the chemical controls on Ni(II) and Zn(II) release from Ni- and Zn-substituted goethite and hematite during reaction with Fe(II). Release follows a rate law consistent with surface reaction limited mineral dissolution and suggests that release occurs near sites of Fe(III) reductive dissolution during Fe(II)-Fe(III) ETAE. Metal substituent type affects reactivity; Zn release is more pronounced from hematite than goethite, whereas the opposite trend occurs for Ni. Buildup of Ni or Zn in solution inhibits further release but this resumes upon fluid exchange, suggesting that sustained release is possible under flow conditions. Mineral and aqueous Fe(II) concentrations as well as pH strongly affect sorbed Fe(II) concentrations, which directly control the reaction rates and final metal concentrations. Our results demonstrate that structurally incorporated trace elements are mobilized from iron oxides into fluids without abiotic or microbial net iron reduction. Such release may affect micronutrient availability, contaminant transport, and the distribution of redox-inactive trace elements in natural and engineered systems.  相似文献   

8.
RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), a nitramine explosive, is often found as a subsurface contaminant at military installations. Though biological transformations of RDX are often reported, abiotic studies in a defined medium are uncommon. The work reported here was initiated to investigate the transformation of RDX by ferrous iron (Fe(II)) associated with a mineral surface. RDX is transformed by Fe(II) in aqueous suspensions of magnetite (Fe3O4). Negligible transformation of RDX occurred when it was exposed to Fe(II) or magnetite alone. The sequential nitroso reduction products (MNX, DNX, and TNX) were observed as intermediates. NH4+, N2O, and HCHO were stable products of the transformation. Experiments with radiolabeled RDX indicate that 90% of the carbon end products remained in solution and that negligible mineralization occurred. Rates of RDX transformation measured for a range of initial Fe(II) concentrations and solution pH values indicate that greater amounts of adsorbed Fe(II) result in faster transformation rates. As pH increases, more Fe(II) adsorbs and k(obs) increases. The degradation of RDX by Fe(II)-magnetite suspensions indicates a possible remedial option that could be employed in natural and engineered environments where iron oxides are abundant and ferrous iron is present.  相似文献   

9.
Fe(II) present at surfaces of iron-containing minerals can play a significant role in the overall attenuation of reducible contaminants in the subsurface. As the chemical environment, i.e., the type and arrangement of ligands, strongly affects the redox potential of Fe(II), the presence of various mineral sorbents is expected to modulate the reactivity of surficial Fe(II)-species in aqueous systems. In a comparative study we evaluated the reactivity of ferrous iron in aqueous suspensions of siderite (FeCO3), nontronite (ferruginous smectite SWa-1), hematite (alpha-Fe2O3), lepidocrocite (gamma-FeOOH), goethite (alpha-FeOOH), magnetite (Fe3O4), sulfate green rust (Fe(II)4Fe(III)2(OH)12SO4 x 4H2O), pyrite (FeS2), and mackinawite (FeS) under similar conditions (pH 7.2, 25 m2 mineral/L, 1 mM Fe(II)aq, O2 (aq) < 0.1 g/L). Surface-area-normalized pseudo first-order rate constants are reported for the reduction of hexachloroethane and 4-chloronitrobenzene representing two classes of environmentally relevant transformation reactions of pollutants, i.e., dehalogenation and nitroaryl reduction. The reactivities of the different Fe(II) mineral systems varied greatly and systematically both within and between the two data sets obtained with the two probe compounds. As a general trend, surface-area-normalized reaction rates increased in the order Fe(II) + siderite < Fe(II) + iron oxides < Fe(II) + iron sulfides. 4-Chloronitrobenzene was transformed by mineral-bound Fe(II) much more rapidly than hexachloroethane, except for suspensions of hematite, pyrite, and nontronite. The results demonstrate that abiotic reactions with surface-bound Fe(II) may affect or even dominate the long-term behavior of reducible pollutants in the subsurface, particularly in the presence of Fe(III) bearing minerals. As such reactions can be dominated by specific interactions of the oxidant with the surface, care must be taken in extrapolating reactivity data of surface-bound Fe(II) between different compound classes.  相似文献   

10.
Biogeochemical iron cycling often generates systems where aqueous Fe(II) and solid Fe(III) oxides coexist. Reactions between these species result in iron oxide surface and phase transformations, iron isotope fractionation, and redox transformations of many contaminant species. Fe(II)-induced recrystallization of goethite and hematite has recently been shown to cause the repartitioning of Ni(II) at the mineral-water interface, with adsorbed Ni incorporating into the iron oxide structure and preincorporated Ni released back into aqueous solution. However, the effect of Fe(II) on the fate and speciation of redox inactive species incompatible with iron oxide structures is unclear. Arsenate sorption to hematite and goethite in the presence of aqueous Fe(II) was studied to determine whether Fe(II) causes substantial changes in the sorption mechanisms of such incompatible species. Sorption isotherms reveal that Fe(II) minimally alters macroscopic arsenate sorption behavior except at circumneutral pH in the presence of elevated concentrations (10?3 M) of Fe(II) and at high arsenate loadings, where a clear signature of precipitation is observed. Powder X-ray diffraction demonstrates that the ferrous arsenate mineral symplesite precipitates under such conditions. Extended X-ray absorption fine structure spectroscopy shows that outside this precipitation regime arsenate surface complexation mechanisms are unaffected by Fe(II). In addition, arsenate was found to suppress Fe(II) sorption through competitive adsorption processes before the onset of symplesite precipitation. This study demonstrates that the sorption of species incompatible with iron oxide structure is not substantially affected by Fe(II) but that such species may potentially interfere with Fe(II)-iron oxide reactions via competitive adsorption.  相似文献   

11.
Uptake of Fe(II) onto hematite (alpha-Fe2O3), corundum (alpha-Al2O3), amorphous ferric oxide (AFO), and a mixture of hematite and AFO was measured. Uptake was operationally divided into adsorption (extractable by 0.5 N HCl within 20 h) and fixation (extractable by 3.0 N HCl within 7 d). For 0.25 mM Fe(II) onto 25 mM iron(III) hematite at pH 6.8: (i) 10% of Fe(II) was adsorbed within 1 min; (ii) 20% of Fe(II) was adsorbed within 1 d; (iii) uptake slowly increased to 24% of Fe(II) during the next 24 d, almost all adsorbed; (iv) at 30 d, the uptake increased to 28% of Fe(II) with 6% of total Fe(II) fixed; and (v) uptake slowly increased to 30% of Fe(II) by 45 d with 10% of total Fe(II) fixed. Similar results were observed for 0.125 mM Fe(II) onto 25 mM iron(III) hematite, except that percent of adsorption and fixation were increased. There was adsorption but no fixation for 0.25 mM Fe(II) onto corundum [196.2 mM Al(III)] at pH 6.8, for 0.125 mM Fe(II) onto 25 mM iron(III) hematite at pH 4.5, and for 0.25 mM Zn(II) onto 25 mM iron(III) hematite at pH 6.8. A small addition of AFO to the hematite suspension increased Fe(II) fixation when 0.25 mM Fe(II) was reacted with 25 mM iron(III) hematite and 0.025 mM Fe(III) AFO at pH 6.8. Reaction of 0.125 mM Fe(II) with 2.5 mM Fe(III) AFO resulted in rapid adsorption of 30% of added Fe(II), followed by conversion of AFO to goethite and a decrease in adsorption without Fe(II) fixation. The fixation of Fe(II) by hematite at pH 6.8 is consistent with interfacial electron transfer and the formation of new mineral phases. We propose that electron transfer from adsorbed Fe(II) to structural Fe(III) in hematite results in oxidation of Fe(II) to AFO on the surface of hematite and that solid-phase contact among hematite, AFO, and structural Fe(II) produces magnetite (Fe3O4). The unique interactions of Fe(II) with iron(III) oxides would be environmentally important to understand the fate of redox-sensitive chemicals.  相似文献   

12.
Corrosion of iron pipes leads to the release of ferrous iron, Fe(II), and the formation of iron oxides, such as goethite and magnetite, on the pipe surface. Fe(II), a potent reductant when associated with iron oxide surfaces, can mediate the reduction of halogenated organic compounds. Batch experiments were performed to investigate the kinetics and pathways of the degradation of selected chlorinated disinfection byproducts (OBPs) by Fe(II) in the presence of synthetic goethite and magnetite. Trichloronitromethane was degraded via reduction, while trichloroacetonitrile, 1,1,1-trichloropropanone, and trichloroacetaldyde hydrate were transformed via both hydrolysis and reduction. Chloroform and trichloroacetic acid were unreactive. Observed pseudo-first-order reductive dehalogenation rates were influenced by DBP chemical structure and identity of the reductant. Fe(II) bound to iron minerals had greater reactivity than either aqueous Fe(II) or structural Fe(II) present in magnetite. For DBPs of structure Cl3C-R, reductive dehalogenation rate constants normalized by the surface density of Fe(II) on both goethite and magnetite correlated with the electronegativity of the -R group and with one electron reduction potential. In addition to chemical transformation, sorption onto the iron oxide minerals was also an important loss process for 1,1,1-trichloropropanone.  相似文献   

13.
14.
This study investigated the reaction mechanisms of nitrate (NO3-) with zerovalent iron (ZVI) media under conditions relevantto groundwatertreatment using permeable reactive barriers (PRB). Reaction rates of NO3- with freely corroding and with cathodically or anodically polarized iron wires were measured in batch reactors. Tafel analysis and electrochemical impedance spectroscopy (EIS) were used to investigate the reactions occurring on the iron surfaces. Reduction of NO3- by corroding iron resulted in near stoichiometric production of NO2-, which did not measurably react in the absence of added Fe(II). Increasing NO3- concentrations resulted in increasing corrosion currents. However, EIS and Tafel analyses indicated that there was little direct reduction of NO3- at the ZVI surface, despite the presence of water reduction. This behavior can be attributed to formation of a microporous oxide on the iron surfaces that blocked reduction of NO3- and NO2- but did not block water reduction. This finding is consistent with previous observations that NO3- impedes reduction of organic compounds by ZVI. Nitrite concentrations greater than 4 mM resulted in anodic passivation of the iron, but passivation was not observed with NO3- concentrations as high as 96 mM. This indicates that the passivating oxide preventing NO3- reduction was permeable toward cation migration. Since reaction with Fe(0) can be excluded asthe mechanism for NO3- and NO2- reduction, reaction with Fe(II)-containing oxides coating the iron surface is the most likely reaction mechanism. This suggests that short-term batch tests requiring little turnover of reactive sites on the iron surface may overestimate long-term rates of NO3- removal because the effects of passivation are not apparent in batch tests conducted with high initial Fe(II) to NO3- ratios.  相似文献   

15.
Kinetics of Cr(VI) reduction by carbonate green rust   总被引:1,自引:0,他引:1  
The kinetics of Cr(VI) reduction to Cr(III) by carbonate green rust were studied for a range of reactant concentrations and pH values. Carbonate green rust, [FeII4FeIII2(OH)12][4H2O x CO3], was synthesized by induced hydrolysis (i.e., coprecipitation) of an Fe(ll)/Fe(III) solution held at a constant pH of 8. An average specific surface area of 47 +/- 7 m2 g(-1) was measured for five separate batches of freeze-dried green rust precipitate. Heterogeneous reduction by Fe(II) associated with the carbonate green rust appears to be the dominant pathway controlling Cr(VI) loss from solution. The apparent stoichiometry of the reaction between ferrous iron associated with green rust ([Fe(II)GR]) and Cr(VI) was slightly higherthan the expected 3:1 ratio, possibly due to the presence of other oxidants, such as oxygen, protons, or interlayer carbonate ions. The rate of Cr(VI) reduction was proportional to the green rust surface area concentration, and psuedo-first-order rate coefficients (kobs) ranging from 1.2 x 10(-3) to 11.2 x 10(-3) s(-1) were determined. The effect of pH was small with a 5-fold decrease in rate with increasing pH (from 5.0 to 9.0). At low Cr(VI) concentrations (<200 microM), the rate of reaction was first order with respect to Cr(VI) concentration, whereas, at high Cr(VI) concentrations, rates appearto deviate from first-order kinetics and approach a constant value. Estimated amounts of surface Fe(II) and total Fe(II) suggest that the deviation from first-order kinetics observed at higher Cr(VI) concentrations and the 50-fold decrease in rate observed upon three sequential exposures to Cr(VI) is due to exhaustion of available Fe(II).  相似文献   

16.
17.
Superoxide (and potentially its conjugate acid hydroperoxyl) is unique among the reactive oxygen species in that its standard redox potential in circumneutral natural waters potentially allows it to reduce ferric iron to the more soluble ferrous state. Here we have observed the superoxide/ hydroperoxyl-mediated reduction of ferric complexes with a variety of synthetic organic ligands and several complexes with natural organic matter (NOM), as well as freshly precipitated amorphous ferric oxyhydroxide, in bicarbonate buffered solutions at pH 8.1. From measurements of superoxide decay in the presence of the complexes, we calculated second-order rate constants for superoxide/ hydroperoxyl-mediated reduction that vary from (9.3+/-0.2) x 10(3) M(-1) s(-1) for the complex between Fe(III) and desferrioxamine B up to (1.9+/-0.2) x 10(5) M(-1) s(-1) for Fe(III)-salicylate and (2.3+/-0.1) x 10(5) M(-1) s(-1) for one of the Fe(III)-NOM complexes. We also verified that ferrous iron was produced from superoxide/hydroperoxyl-mediated Fe(III) reduction using ferrozine to trap free Fe(II). Low yields of the ferrozine complex when compared to the measured rates of superoxide decay suggest that ferric complexes are reduced directlyto corresponding ferrous complexes, with much of the ferrous complex reoxidizing before it is able to release free ferrous iron. This is an important consideration for microorganisms, as the kinetics of trace metal uptake is typically governed by free ion activity.  相似文献   

18.
Uptake of ferrous iron from aqueous solution by iron oxides results in the formation of a variety of reactive surface species capable of reducing polyhalogenated methanes (PHMs). Pseudo-first-order reaction rate constants, k(obs), of PHMs increased in the order CHBrCl2 < CHBr2Cl < CHBr3 < CCl4 < CFBr3 < CBrCl3 < CBr2Cl2. The k(obs) values increased with the exposure time, teq, of Fe(II) to suspended iron oxides which was attributed to the rearrangement of initially sorbed Fe(II) species to more reactive surface species with time. At pH 7.2, the k(obs) values of PHMs also increased with the concentration of surface-bound ferrous iron, Fe(II)sorb, particularly when Fe(II)tot was increased to concentrations where surface precipitation becomes likely. At fixed total Fe(II) concentrations, k(obs) values increased exponentially with pH. The highest reactivities were associated with pH conditions where surface precipitation of Fe(II) is expected. Fe(II)sorb and pH, however, had opposite effects on the product formation of PHMs. At pH 7.2, the formation of formate from CX4 (X = CI, Br) increased with Fe(II)sorb, whereas increasing pH favored the formation of CHX3. The ratio of halogenated products and formate formed is indicative of the relative importance of initial one- or two-electron-transfer processes, respectively, and was found to depend on the type of iron oxide mineral also. Our data form a basis to assess the importance of chemical reactions in natural attenuation processes of PHMs in environmental systems under iron-reducing conditions.  相似文献   

19.
Oxidation of Fe(II) in rainwater   总被引:1,自引:0,他引:1  
Photochemically produced Fe(II) is oxidized within hours under environmentally realistic conditions in rainwater. The diurnal variation between photochemical production and reoxidation of Fe(II) observed in our laboratory accurately mimics the behavior of ferrous iron observed in field studies where the highest concentrations of dissolved Fe(ll) occur in afternoon rain during the period of maximum sunlight intensity followed by gradually decreasing concentrations eventually returning to early morning pre-light values. The experimental work presented here, along with the results of kinetics studies done by others, suggests thatthe primary process responsible for the decline in photochemically produced Fe(II) concentrations is oxidation by hydrogen peroxide. This reaction is first order with respect to both the concentrations of Fe(II) and H2O2. The second-order rate constant determined for six different authentic rain samples varied over an order of magnitude and was always less than or equal to the rate constant determined for this reaction in simple acidic solutions. Oxidation of photochemically produced ferrous iron by other oxidants including molecular oxygen, ozone, hydroxyl radical, hydroperoxyl/superoxide radical, and hexavalent chromium were found to be insignificant under the conditions present in rainwater. This study shows that Fe(II) occurs as at least two different chemical species in rain; photochemically produced Fe(II) that is oxidized over time periods of hours, and a background Fe(II) that is protected against oxidation, perhaps by organic complexation, and is stable against oxidation for days. Because the rate of oxidation of photochemically produced Fe(II) does not increase with increasing rainwater pH, the speciation of this more labile form of Fe(II) is also not controlled by simple hydrolysis reactions.  相似文献   

20.
Experiments were conducted to examine the role of humic acid and quinone model compounds in bromate reduction by Fe(0). The reactivity of Fe(0) toward bromate declined by a factor of 1.3-2.0 in the presence of humic acid. Evidence was obtained that the quick complexation of humic acid with iron species and its adsorption passivated the iron surface and decreased the rate of bromate reduction by Fe(0). On the other hand, in the long run, the reduced functional groups present in humic acid were observed to regenerate Fe(II) and reduce bromate abiotically. Compared with the case of humic acid only, the simultaneous presence of Fe(II) and humic acid significantly increased the bromate removal rate. Fe(III)/Fe(II) acted as a catalyst in the oxidation of humic acid by bromate. Anthraquinone-2,6-disulfonate (AQDS) and lawsone did not cause any significant effect on the bromate reduction rate by Fe(0). However, the redox reactivity of lawsone in the presence of Fe(III) was evident, while AQDS did not show any under the tested conditions. The difference was attributable to the presence/ absence of reducing functional groups in the model compounds. The electron spin resonance further demonstrated that the redox functional groups in humic acid are most likely quinone-phenol moieties. Although the bromate reduction rate by regenerated Fe(II) is a few times slower than that by Fe(0), the reactive Fe(II) can be, alternatively, reductively formed to maintain iron surface activation and bromate reduction to prolong the lifetime of the zerovalent iron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号