首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fully integrated CMOS transceiver tuned to 2.4 GHz consumes 46 mA in receive mode and 47 mA in transmit mode from a 2.7-V supply. It includes all the receive and transmit building blocks, such as frequency synthesizer, voltage-controlled oscillator (VCO), power amplifier, and demodulator. The receiver uses a low-IF architecture for higher level of integration and lower power consumption. It achieves a sensitivity of -82 dBm at 0.1% BER, and a third-order input intercept point (IIP3) of -7 dBm. The direct-conversion transmitter delivers a GFSK modulated spectrum at a nominal output power of 4 dBm. The on-chip voltage controlled oscillator has a close-in phase-noise of -120 dBc/Hz at 3-MHz offset  相似文献   

2.
A fully integrated dual-mode CMOS transceiver tuned to 2.4 GHz consumes 65 mA in receive mode and 78 mA in transmit mode from a 3-V supply. The radio includes all the receive and transmit building blocks, such as frequency synthesizer, voltage-controlled oscillator (VCO), and power amplifier, and is intended for use in 802.11b and Bluetooth applications. The Bluetooth receiver uses a low-IF architecture for higher level of integration and lower power consumption, while the 802.11b receiver is direct conversion. The receiver achieves a typical sensitivity of -88 dBm at 11 Mb/s for 802.11b, and -83 dBm for Bluetooth mode. The receiver minimum IIP3 is -8 dBm. Both transmitters use a direct-conversion architecture, and deliver a nominal output power of 0 dBm, with a power range of 20 dB in 2-dB steps.  相似文献   

3.
This paper presents a fully integrated 0.18-/spl mu/m CMOS Bluetooth transceiver. The chip consumes 33 mA in receive mode and 25 mA in transmit mode from a 3-V system supply. The receiver uses a low-IF (3-MHz) architecture, and the transmitter uses a direct modulation with ROM-based Gaussian low-pass filter and I/Q direct digital frequency synthesizer for high level of integration and low power consumption. A new frequency shift keying demodulator based on a delay-locked loop with a digital frequency offset canceller is proposed. The demodulator operates without harmonic distortion, handles up to /spl plusmn/160-kHz frequency offset, and consumes only 2 mA from a 1.8-V supply. The receiver dynamic range is from -78 dBm to -16 dBm at 0.1% bit-error rate, and the transmitter delivers a maximum of 0 dBm with 20-dB digital power control capability.  相似文献   

4.
This paper presents radio-frequency (RF) microsystems (MSTs) composed by low-power devices for use in wireless sensors networks (WSNs). The RF CMOS transceiver is the main electronic system and its power consumption is a critical issue. Two RF CMOS transceivers with low-power and low-voltage supply were fabricated to operate in the 2.4 and 5.7 GHz ISM bands. The measurements made in the RF CMOS transceiver at 2.4 GHz, which showed a sensitivity of −60 dBm with a power consumption of 6.3 mW from 1.8 V supply. The measurements also showed that the transmitter delivers an output power of 0 dBm with a power consumption of 11.2 mW. The RF CMOS transceiver at 5.7 GHz has a total power consumption of 23 mW. The target application of these RF CMOS transceivers is for MSTs integration and for use as low-power nodes in WSNs to work during large periods of time without human operation, management and maintenance. These RF CMOS transceivers are also suitable for integration in thermoelectric energy scavenging MSTs.  相似文献   

5.
A 1.9-GHz Single-Chip CMOS PHS Cellphone   总被引:1,自引:0,他引:1  
A single-chip CMOS PHS cellphone, integrated in a 0.18-mum CMOS technology, implements all handset functions including radio, voice, audio, MODEM, TDMA controller, CPU, and digital interfaces. Both the receiver and transmitter are based on a direct conversion architecture. The RF transceiver achieves -106 dBm receive sensitivity and +4 dBm EVM-compliant transmit power. The local oscillator, based on a sigma-delta fractional-N synthesizer, has a phase noise of -118 dBc/Hz at 600kHz offset and settling time of 15 mus. The current consumption for the receiver, transmitter and synthesizer are 32 mA, 29 mA, and 25 mA, respectively, from a 3.0 V supply  相似文献   

6.
This paper presents a 1 V RF transceiver for biotelemetry and wireless body sensor network (WBSN) applications, realized as part of an ultra low power system-on-chip (SoC), the Sensiumtrade. The transceiver utilizes FSK/GFSK modulation at a data rate of 50 kbit/s to provide wireless connectivity between target sensor nodes and a central base-station node in a single-hop star network topology operating in the 862-870 MHz European short-range-device (SRD) and the 902-928 MHz North American Industrial, Scientific & Medical (ISM) frequency bands. Controlled by a proprietary media access controller (MAC) which is hardware implemented on chip, the transceiver operates half-duplex, achieving -102 dBm receiver input sensitivity (for 1E-3 raw bit error rate) and up to -7 dBm transmitter output power through a single antenna port. It consumes 2.1 mA during receive and up to 2.6 mA during transmit from a 0.9 to 1.5 V supply. It is fabricated in a 0.13 mum CMOS technology and occupies 7 mm2 in a SoC die size of 4 times 4 mm2.  相似文献   

7.
This paper presents the experimental results of a low‐power low‐cost RF transceiver for the 915 MHz band IEEE 802.15.4b standard. Low power and low cost are achieved by optimizing the transceiver architecture and circuit design techniques. The proposed transceiver shares the analog baseband section for both receive and transmit modes to reduce the silicon area. The RF transceiver consumes 11.2 mA in receive mode and 22.5 mA in transmit mode under a supply voltage of 1.8 V, in which 5 mA of quadrature voltage controlled oscillator is included. The proposed transceiver is implemented in a 0.18 μm CMOS process and occupies 10 mm2 of silicon area.  相似文献   

8.
A low voltage CMOS RF front-end for IEEE 802.11b WLAN transceiver is presented. The problems to implement the low voltage design and the on-chip input/output impedance matching are considered, and some improved circuits are presented to overcome the problems. Especially, a single-end input, differential output double balanced mixer with an on-chip bias loop is analyzed in detail to show its advantages over other mixers. The transceiver RF front-end has been implemented in 0.18 um CMOS process, the measured results show that the Rx front-end achieves 5.23 dB noise figure, 12.7 dB power gain (50 ohm load), −18 dBm input 1 dB compression point (ICP) and −7 dBm IIP3, and the Tx front-end could output +2.1 dBm power into 50 ohm load with 23.8 dB power gain. The transceiver RF front-end draws 13.6 mA current from a supply voltage of 1.8 V in receive mode and 27.6 mA current in transmit mode. The transceiver RF front-end could satisfy the performance requirements of IEEE802.11b WLAN standard. Supported by the National Natural Science Foundation of China, No. 90407006 and No. 60475018.  相似文献   

9.
A Single-Chip CMOS Transceiver for UHF Mobile RFID Reader   总被引:4,自引:0,他引:4  
This paper describes a single-antenna low-power single-chip radio frequency identification (RFID) reader for mobile phone applications. The reader integrates an RF transceiver, data converters, a digital baseband modem, an MPU, memory, and host interfaces. The direct conversion RF receiver architecture with the highly linear RF front-end circuit and DC offset cancellation circuit is used to give good immunity to the large transmitter leakage. It is suitable for a mobile phone reader with single-antenna architecture and low-power reader solution. The transmitter is implemented in the direct I/Q up-conversion architecture. The frequency synthesizer based on a fractional-N phase-locked-loop topology offering 900 MHz quadrature LO signals is also integrated with the RF transceiver. The reader is fabricated in a 0.18 mum CMOS technology, and its die size is 4.5 mm times 5.3 mm including electrostatic discharge I/O pads. The reader consumes a total current of 89 mA apart from the external power amplifier with 1.8 V supply voltage. It achieves an 8 dBm P1dB, an 18.5 dBm IIP3, and a maximum transmitter output power of 4 dBm.  相似文献   

10.
This paper proposes an IEEE 802.15.4m compliant TV white-space orthogonal frequency-division multiplexing (TVWS)-(OFDM) radio frequency (RF) transceiver that can be adopted in advanced metering infrastructures, universal remote controllers, smart factories, consumer electronics, and other areas. The proposed TVWS-OFDM RF transceiver consists of a receiver, a transmitter, a 25% duty-cycle local oscillator generator, and a delta-sigma fractional-N phase-locked loop. In the TV band from 470 MHz to 698 MHz, the highly linear RF transmitter protects the occupied TV signals, and the high-Q filtering RF receiver is tolerable to in-band interferers as strong as −20 dBm at a 3-MHz offset. The proposed TVWS-OFDM RF transceiver is fabricated using a 0.13-μm CMOS process, and consumes 47 mA in the Tx mode and 35 mA in the Rx mode. The fabricated chip shows a Tx average power of 0 dBm with an error-vector-magnitude of < 3%, and a sensitivity level of −103 dBm with a packet-error-rate of < 3%. Using the implemented TVWS-OFDM modules, a public demonstration of electricity metering was successfully carried out.  相似文献   

11.
State-of-the-art endoscopy systems require electronics allowing for real-time, bidirectional data transfer. Proposed are 2.4-GHz low-power transceiver analog front-end circuits for bidirectional high data rate wireless telemetry in medical endoscopy applications. The prototype integrates a low-IF receiver analog front-end [low noise amplifier (LNA), double balanced down-converter, bandpass-filtered automatic gain controlled (AGC) loop and amplitude-shift keying (ASK) demodulator], and a direct up-conversion transmitter analog front-end [20-MHz IF phase-locked loop (PLL) with well-defined amplitude control circuit, ASK modulator, up-converter, and power amplifier] on a single chip together with an internal radio frequency oscillator and local oscillating (LO) buffers. Design tradeoffs have been made over the boundaries of the different building blocks to optimize the overall system performance. All building blocks feature circuit topologies that enable comfortable operation at low power consumption. The circuits have been implemented in a 0.25-microm CMOS process. The measured sensitivity of the receiver analog front-end is -70 dBm with a data rate of 256 kbps, and the measured output power of the transmitter analog front-end could achieve -23 dBm with a data rate of 1 Mbps. The integrated circuit consumes a current of 6 mA in receiver mode and 5.6 mA in transmitter mode with a power supply of 2.5 V. This paper shows the feasibility of achieving the analog performance required by the wireless endoscopy capsule system in 0.25 microm CMOS.  相似文献   

12.
This paper reports on our development of a dual‐mode transceiver for a CMOS high‐rate Bluetooth system‐on‐chip solution. The transceiver includes most of the radio building blocks such as an active complex filter, a Gaussian frequency shift keying (GFSK) demodulator, a variable gain amplifier (VGA), a dc offset cancellation circuit, a quadrature local oscillator (LO) generator, and an RF front‐end. It is designed for both the normal‐rate Bluetooth with an instantaneous bit rate of 1 Mb/s and the high‐rate Bluetooth of up to 12 Mb/s. The receiver employs a dualconversion combined with a baseband dual‐path architecture for resolving many problems such as flicker noise, dc offset, and power consumption of the dual‐mode system. The transceiver requires none of the external image‐rejection and intermediate frequency (IF) channel filters by using an LO of 1.6 GHz and the fifth order on‐chip filters. The chip is fabricated on a 6.5‐mm2 die using a standard 0.25‐μm CMOS technology. Experimental results show an in‐band image‐rejection ratio of 40 dB, an IIP3 of ?5 dBm, and a sensitivity of ?77 dBm for the Bluetooth mode when the losses from the external components are compensated. It consumes 42 mA in receive π/4‐diffrential quadrature phase‐shift keying (π/4‐DQPSK) mode of 8 Mb/s, 35 mA in receive GFSK mode of 1 Mb/s, and 32 mA in transmit mode from a 2.5‐V supply. These results indicate that the architecture and circuits are adaptable to the implementation of a low‐cost, multi‐mode, high‐speed wireless personal area network.  相似文献   

13.
A low-power 2.4-GHz transmitter/receiver CMOS IC   总被引:1,自引:0,他引:1  
A 2.4-GHz CMOS receiver/transmitter incorporates circuit stacking and noninvasive baseband filtering to achieve a high sensitivity with low power dissipation. Using a single 1.6-GHz local oscillator, the transceiver employs two upconversion and downconversion stages while providing on-chip image rejection filtering. Realized in a 0.25-/spl mu/m digital CMOS technology, the receiver exhibits a noise figure of 6 dB and consumes 17.5 mW from a 2.5-V supply, and the transmitter delivers an output power of 0 dBm with a power consumption of 16 mW.  相似文献   

14.
A 1-Mb/s 916.5-MHz on-off keying (OOK) transceiver for short-range wireless sensor networks has been designed in a 0.18-mum CMOS process. The receiver has an envelope detection based architecture with a highly scalable RF front-end. Untuned RF circuits are leveraged and optimized in the receiver to achieve superior energy efficiency compared to tuned RF circuits. The receiver power consumption scales from 0.5 mW to 2.6 mW, with an associated sensitivity of -37 dBm to -65 dBm at a BER of 10 -3. The transmitter consumes 3.8 mW to 9.1 mW with output power from -11.4 dBm to -2.2 dBm. The receiver achieves a startup time of 2.5 mus, allowing for efficient duty cycling  相似文献   

15.
This paper describes a 0.18-mum CMOS direct-conversion dual-band triple-mode wireless LAN transceiver. The transceiver has a concurrent dual-band low-noise amplifier for low power consumption with a low noise figure, a single widely tunable low-pass filter based on a triode-biased MOSFET transconductor for multi-mode operation with low power consumption, a DC-offset compensation circuit with an adaptive activating feedback loop to achieve a fast response time with low power consumption, and a SigmaDelta-based low-phase-noise fractional-N frequency synthesizer with a switched-resonator voltage controlled oscillator to cover the entire frequency range for the IEEE WLAN standards. The transceiver covers both 2.4-2.5 and 4.9-5.95 GHz and has extremely low power consumption (78 mA in receive mode, 76 mA in transmit mode-both at 2.4/5.2 GHz). A system noise figure of 3.5/4.2 dB, a sensitivity of -93/-94 dBm for a 6-Mb/s OFDM signal, and an error vector magnitude of 3.2/3.4% were obtained at 2.4/5.2 GHz, respectively  相似文献   

16.
A fully integrated CMOS direct-conversion 5-GHz transceiver with automatic frequency control is implemented in a 0.18-/spl mu/m digital CMOS process and housed in an LPCC-48 package. This chip, along with a companion baseband chip, provides a complete 802.11a solution The transceiver consumes 150 mW in receive mode and 380 mW in transmit mode while transmitting +15-dBm output power. The receiver achieves a sensitivity of better than -93.7dBm and -73.9dBm for 6 Mb/s and 54 Mb/s, respectively (even using hard-decision decoding). The transceiver achieves a 4-dB receive noise figure and a +23-dBm transmitter saturated output power. The transmitter also achieves a transmit error vector magnitude of -33 dB. The IC occupies a total die area of 11.7 mm/sup 2/ and is packaged in a 48-pin LPCC package. The chip passes better than /spl plusmn/2.5-kV ESD performance. Various integrated self-contained or system-level calibration capabilities allow for high performance and high yield.  相似文献   

17.
实现了一个应用于IEEE 802.11b无线局域网系统的2.4GHz CMOS单片收发机射频前端,它的接收机和发射机都采用了性能优良的超外差结构.该射频前端由五个模块组成:低噪声放大器、下变频器、上变频器、末前级和LO缓冲器.除了下变频器的输出采用了开漏级输出外,各模块的输入、输出端都在片匹配到50Ω.该射频前端已经采用0.18μm CMOS工艺实现.当低噪声放大器和下变频器直接级联时,测量到的噪声系数约为5.2dB,功率增益为12.5dB,输入1dB压缩点约为-18dBm,输入三阶交调点约为-7dBm.当上变频器和末前级直接级联时,测量到的噪声系数约为12.4dB,功率增益约为23.8dB,输出1dB压缩点约为1.5dBm,输出三阶交调点约为16dBm.接收机射频前端和发射机射频前端都采用1.8V电源,消耗的电流分别为13.6和27.6mA.  相似文献   

18.
This paper presents a 900 MHz zero‐IF RF transceiver for IEEE 802.15.4g Smart Utility Networks OFDM systems. The proposed RF transceiver comprises an RF front end, a Tx baseband analog circuit, an Rx baseband analog circuit, and a ΔΣ fractional‐N frequency synthesizer. In the RF front end, re‐use of a matching network reduces the chip size of the RF transceiver. Since a T/Rx switch is implemented only at the input of the low‐noise amplifier, the driver amplifier can deliver its output power to an antenna without any signal loss; thus, leading to a low dc power consumption. The proposed current‐driven passive mixer in Rx and voltage‐mode passive mixer in Tx can mitigate the IQ crosstalk problem, while maintaining 50% duty‐cycle in local oscillator clocks. The overall Rx‐baseband circuits can provide a voltage gain of 70 dB with a 1 dB gain control step. The proposed RF transceiver is implemented in a 0.18 μm CMOS technology and consumes 37 mA in Tx mode and 38 mA in Rx mode from a 1.8 V supply voltage. The fabricated chip shows a Tx average power of ?2 dBm, a sensitivity level of ?103 dBm at 100 Kbps with , an Rx input P1dB of ?11 dBm, and an Rx input IP3 of ?2.3 dBm.  相似文献   

19.
A low-power fullband 802.11a/b/g WLAN transceiver in 0.15-mum CMOS technology is described. The zero-IF transceiver achieves a receiver noise figure of 4.4/4 dB for the 2.4-GHz/5-GHz bands, respectively. The corresponding sensitivity at 54-Mb/s operation is -72 dBm for 802.11g and -74 dBm for 802.11a using actual PER measurement. An on-chip PA delivers 20 dBm output P1-dB. A new I/Q compensation scheme is implemented in local oscillator (LO) and an image rejection of better than 52 dB is observed. The transmitter delivers 10/1.5 dBm (2.4-/5-GHz) EVM-compliant output power for a 64-QAM OFDM signal at 54-Mb/s. The power consumption is 117/135 mW (1.8-V) in the receive mode and 570/233.1 mW in the transmit mode for 2.4/5 GHz, respectively. The low power consumption, high integration and robustness (-40 to 140degC) make this transceiver suitable for portable applications  相似文献   

20.
为实现低功耗信号传输,提出一种基于OFDM的IEEE 802.15.4g低功耗无线电频率(RF)收发器。该新型RF收发器电路由Tx BBA(基带模拟)、片上RF开关前端、Rx BBA及锁相环(PLL)构成,采用0.18?m CMOS技术制作,满足了IEEE 802.15.4g OFDM系统低功耗信号传输的需要。实际测试结果显示,相比传统的RF收发器,提出的RF收发器具有较低的功耗和良好的灵敏度,当电源电压为1.8 V时,Tx模式下会消耗14.7mA,Rx模式下会消耗15.7mA。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号