首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adsorption behaviour of polyethylene glycol (PEG) in the presence of chloride ion in an acid copper electrolyte was investigated by several electrochemical methods including chronopotentiometry, linear sweep voltammetry, cyclic voltammetry and electrochemical impedance. Surface coverages calculated from the chronopotentiometry measurement were fitted into the Toth isotherm with good agreement. The standard free energy of PEG adsorption, G ads, evaluated to be –51.67 kJ mol–1 indicates strong interaction between PEG and the copper surface. Current–potential hysteresis was found in bath with low PEG concentration as the result of low PEG adsorption rate. Void-free anisotropic deposition for IC copper interconnect can thus be achieved with the addition of PEG only by properly adjusting its concentration based on its adsorption behaviour.  相似文献   

2.
聚乙二醇增塑聚乳酸的非等温结晶动力学研究   总被引:2,自引:0,他引:2  
田怡  钱欣 《聚酯工业》2007,20(2):15-18
采用DSC方法对聚乙二醇(PEG)增塑聚乳酸的非等温结晶动力学进行了研究。结果表明,PEG的加入明显提高了聚乳酸的结晶速度。对所得数据分别用Ozawa方程和莫志深方法进行了处理,发现在给定温度范围里非等温结晶时,PLA/PEG主要是以均相成核的三维生长方式结晶;PLA的结晶速度随着PEG分子质量的增加而升高。  相似文献   

3.
Poly(ethylene glycol) (PEG) has been widely used in studies of polymer–clay nanocomposites because it readily intercalates in smectite clays. Nanocomposites were formed from PEG with molecular weights (Mw) ranging from 300 to 20,000, as evidenced by expansion of the basal planar spacing of the clay (d001) in X‐ray diffraction. However PEG with high molecular weight (≥ 10,000) readily underwent degradation during preparation of composites when heated at low temperature (60°C) due to oxidative attack. Molecular weight distribution determined by gel permeation chromatography showed that this degradation always happened with or without the presence of clay and it became more serious when the molecular weight was higher. The reduction in pH of aqueous PEG solutions after degradation increased with molecular weight. Since d001 was independent of molecular weight over a wide range, such degradation cannot be detected by this method. Precautions against oxidative attack are therefore recommended to avoid decomposition when preparing PEG–clay nanocomposites. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 548–552, 2004  相似文献   

4.
Poly(ethylene terephthalate) copolymers were prepared by melt polycondensation of dimethyl terephthalate and excess ethylene glycol with 10–40mol% (in feed) of poly(ethylene glycol) (E) and poly(tetramethylene glycol) (B), with molecular weight (MW) of E and B 200–7500 and 1000, respectively. The reduced specific viscosity of copolymers increased with increasing MW and content of polyglycol comonomer. The temperature of melting (Tm), cold crystallization and glass transition (Tg) decreased with the copolymerization. Tm depression of copolymers suggested that the E series copolymers are the block type at higher content of the comonomer. Tg was decreased below room temperature by the copolymerization, which affected the crystallinity and the density of copolymer films. Water absorption increased with increasing content of comonomer, and the increase was much higher for E1000 series films than B1000 series films. The biodegradability was estimated by weight loss of copolymer films in buffer solution with and without a lipase at 37°C. The weight loss was enhanced a little by the presence of a lipase, and increased abruptly at higher comonomer content, which was correlated to the water absorption and the concentration of ester linkages between PET and PEG segments. The weight loss of B series films was much lower than that of E series films. The abrupt increase of the weight loss by alkaline hydrolysis is almost consistent with that by biodegradation.  相似文献   

5.
BACKGROUND: The fast development of practical applications of photopolymerizable compositions (PPCs) leads to a growing demand for the elaboration of novel monomers and simultaneously for the investigation of three‐dimensional polymerization mechanisms including the possible influence of initiator, additives, etc. The aim of the current study is to explore and clarify the role of ionic liquids (ILs) as environmentally friendly catalytic additives in the photopolymerization of poly(ethylene glycol dimethacrylate)s. RESULTS: The photopolymerization of triethylene glycol dimethacrylate (TEGDM) and poly(ethylene glycol‐400 dimethacrylate) (PEGDM) in the presence of various ILs both imidazolium‐based, i.e. [1‐methyl‐3‐alkylim]+ (CF3SO2)2N? (im = imidazolium; alkyl = C2H5, C4H9, C14H29), and phosphonium‐based, i.e. [P+ (C6H13)3(C14H29)]X? (X? = PF6?, BF4?, (CF3SO2)2N?, Cl?), as catalytic additives was investigated. The influence of the concentration of the ionic salts as well as the nature of the ILs upon the photopolymerization was studied in detail. It was found that imidazolium ILs accelerate TEGDM photopolymerization and suppress the polymerization of PEGDM. In contrast, polymerization of PEGDM with extra small amounts of phosphonium ionic solvents proceeded at a high rate and offered access to new polymers and the utilization of low‐reactivity monomers in PPCs. CONCLUSION: The most striking advantage is that the use of certain ILs permits the control of polymerization rate to achieve maximum oligomer conversion. Copyright © 2007 Society of Chemical Industry  相似文献   

6.
杨钊  郝建原 《化工进展》2012,31(10):2265-2269
采用3种新式引发剂,即2-(苄氧基)乙醇钾、2-(四氢-2H-吡喃-2-氧基)乙醇钾、单丙烯基乙二醇钾引发环氧乙烷阴离子开环聚合,反应条件为25 ℃、48 h、醇与萘钾摩尔比例1∶1,得到3种异端基遥爪聚乙二醇。以2-(苄氧基)乙醇钾引发聚合所得产物为起始物,经一系列反应,得到两种两端均为活性基团的异端基遥爪聚乙二醇,这种方法具有普适性。通过1HNMR及GPC手段,表征了产物的结构、分子量及分子量分布。结果表明可以得到高产率、分子量可控且分布窄的异端基遥爪聚乙二醇。  相似文献   

7.
The intrinsic viscosity of polystyrene–poly(ethylene oxide) (PS–PEO) and PS–poly(ethylene glycol) (PEG) blends have been measured in benzene as a function of blend composition for various molecular weights of PEO and PEG at 303.15 K. The compatibility of polymer pairs in solution were determined on the basis of the interaction parameter term, Δb, and the difference between the experimental and theoretical weight-average intrinsic viscosities of the two polymers, Δ[η]. The theoretical weight-average intrinsic viscosities were calculated by interpolation of the individual intrinsic viscosities of the blend components. The compatibility data based on [η] determined by a single specific viscosity measurement, as a quick method for the determination of the intrinsic viscosity, were compared with that obtained from [η] determined via the Huggins equation. The effect of molecular weights of the blend components and the polymer structure on the extent of compatibility was studied. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 1471–1482, 1998  相似文献   

8.
Poly(ethylene glycol) (PEG) and end‐capped poly(ethylene glycol) (poly(ethylene glycol) dimethyl ether (PEGDME)) of number average molecular weight 1000 g mol?1 was melt blended with poly(ethylene terephthalate) (PET) oligomer. NMR, DSC and WAXS techniques characterized the structure and morphology of the blends. Both these samples show reduction in Tg and similar crystallization behavior. Solid‐state polymerization (SSP) was performed on these blend samples using Sb2O3 as catalyst under reduced pressure at temperatures below the melting point of the samples. Inherent viscosity data indicate that for the blend sample with PEG there is enhancement of SSP rate, while for the sample with PEGDME the SSP rate is suppressed. NMR data showed that PEG is incorporated into the PET chain, while PEGDME does not react with PET. Copyright © 2005 Society of Chemical Industry  相似文献   

9.
Biofouling that involves protein adsorption, cell and bacteria adhesion, and biofilm formation between a surface and biological entities is a great challenge for biomedical and industry applications. In this work, L ‐tyrosine‐derived polyurethanes (L ‐polyurethane) with different molecular weights of poly(ethylene glycol) (PEG) were synthesized, characterized and coated on gold surfaces using spin‐coating. The non‐fouling activity of different L ‐polyurethane films was evaluated by protein adsorption and cell adhesion. Surface plasmon resonance and cell assay results demonstrate that the PEG content in these L ‐polyurethanes contributes excellent resistance to protein adsorption and cell attachments. This work provides alternative and effective biomaterials for potential applications in blood‐contacting devices. Copyright © 2011 Society of Chemical Industry  相似文献   

10.
Random copolymers of poly(ethylene glycol) methacrylate (PEGM), and diethyl amino ethyl methacrylate (DEAEM) were synthesized at low, and high conversions by photoinitiation. Crosslinked poly(PEGM-co-DEAEM) samples were obtained, and characterized by FTIR, SEM, DSC, TGA, and elemental analyses. Swelling behavior of the copolymers revealed that the copolymers acted as superabsorbent hydrogels. The monomer reactivity ratios were calculated using Fineman Ross, Extended Kelen Tüdøs , and Mayo Lewis methods that gave r1(PEGM) = 0.90, r2(DEAEM) = 0.14 at low conversions. At high conversions r1 and r2 values were calculated as 1.01 and 0.40, respectively. Adsorption isotherms of methyl orange (MO) onto hydrogels were studied using Langmuir, Freundlich, and Temkin models. The experimental data fitted well with the Langmuir equation. The maximum adsorption capacity for MO was 212.7 mg g−1 at pH = 3. The adsorption data gave best fit with the pseudo-second order kinetic model. Thermodynamic evaluation showed spontaneous nature for MO adsorption onto poly(PEGM-co-DEAEM) hydrogels. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47707.  相似文献   

11.
Poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG) were melt-blended and extruded into films in the PLA/PEG ratios of 100/0, 90/10, 70/30, 50/50, and 30/70. It was concluded from the differential scanning calorimetry and dynamic mechanical analysis results that PLA/PEG blends range from miscible to partially miscible, depending on the concentration. Below 50% PEG content the PEG plasticized the PLA, yielding higher elongations and lower modulus values. Above 50% PEG content the blend morphology was driven by the increasing crystallinity of PEG, resulting in an increase in modulus and a corresponding decrease in elongation at break. The tensile strength was found to decrease in a linear fashion with increasing PEG content. Results obtained from enzymatic degradation show that the weight loss for all of the blends was significantly greater than that for the pure PLA. When the PEG content was 30% or lower, weight loss was found to be primarily due to enzymatic degradation of the PLA. Above 30% PEG content, the weight loss was found to be mainly due to the dissolution of PEG. During hydrolytic degradation, for PLA/PEG blends up to 30% PEG, weight loss occurs as a combination of degradation of PLA and dissolution of PEG. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 1495–1505, 1997  相似文献   

12.
In this study, the coating based on the blends of low molecular weight polyethylene glycol (PEG) and cellulose nano‐crystals (CNC) was introduced to immobilize on the surface of polyethylene terephthalate (PET) fabrics to modify the surface properties of fabrics, and to fabricate comfortable fabrics for formidable climate. Field‐emission scanning electron microscope, attenuated total reflectance Fourier transform infrared spectroscopy, and differential scanning calorimetry (DSC) were employed to study the topography, superficial ingredients, and thermal activity of the finished fabrics. The observation of field‐emission scanning electron microscope and attenuated total reflectance Fourier transform infrared spectroscopy confirmed that the surface of PET fabrics was covered by CNC/PEG1000/PEG600 coating. The transition onset temperature and phase change enthalpy of PET fabrics treated with CNC/PEG1000/PEG600 were at 7.06°C and 11.41 kJ/kg, respectively. Dimensional memory measurement demonstrated that the introduction of CNC caused the deformation percent to decrease by about 41% for PET fabrics covered with CNC/PEG1000/PEG600 coating. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

13.
Adsorption measurements and inhibition tests were used to investigate the mechanisms of shale stabilization by hydrophobically modified poly(ethylene glycol) (PEG). Commercially available PEG with a large range of molar masses and PEG diesters were adsorbed on smectite‐rich clay from saline solutions and the clay/polymer complexes obtained were characterized by thermogravimetric analysis and x‐ray diffraction. The adsorption isotherms obtained for all unmodified PEG showed low affinity for the clay surface, however they all accessed the interlamellar spaces of the clay and reduced the clay water content of the complexes obtained. The PEG macromolecules had their affinity for the clay strongly enhanced by the hydrophobic modification especially with dodecanoic acid and were intercalated into the clay matrix, reducing, in a more efficient way, the water uptake by the clay. Conventional rolling tests were performed to evaluate the effect of polymers on the clay cuttings integrity. Results show that under conditions promoting the adsorption of polymers on both external and interlayer clay surfaces, displacement of the water from the clay was obtained and dispersion and disintegration of clay cuttings were inhibited. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
Novel water‐soluble unsaturated poly(ether amide)s (PEAs) were synthesized by low‐temperature polycondensation of fumaryl chloride and amine‐terminated poly(ethylene glycol) (Jeffamine®). The unsaturated copolymers were further chemically modified with thiols to provide reactive pendant functional groups. Hydrogels based on these copolymers were prepared by copolymerization of the PEA with N‐vinyl pyrrolidone exposure to ultraviolet (UV) irradiation. The resulting hydrogels exhibited a high swelling ratio, and the magnitude of swelling depended on the molecular weight of Jeffamine®. The swelling ratio and equilibrium water content tended to increase with increasing chain length of the Jeffamine® used in copolymer synthesis. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 913–920, 1999  相似文献   

15.
This paper reports the measured values of dielectric permittivity ε′ and dielectric loss ε″ of ethylene glycol, diethylene glycol and poly(ethylene glycol)s of average molecular weight 200, 300, 400 and 600 g mol−1 in the pure liquid state. The measurements have been carried out in the frequency range 200 MHz to 20 GHz at four different temperatures of 25, 35, 45 and 55 °C. The complex plane plots (ε″ versus ε′) of these molecules are Cole–Cole arcs. The static dielectric constant ε0, high‐frequency limiting dielectric constant ε, average relaxation time τ0 and distribution parameter α have been determined from these plots. The value of the Kirkwood correlation factor g and the dielectric rate free energy of activation ΔF have also been evaluated. The dependence of relaxation time on molecular size and viscosity has been discussed. A comparison has also been made with the dielectric behaviour of these molecules in dilute solutions of non‐polar solvents, which were carried out earlier in this laboratory. The influences of intermolecular hydrogen bonding and molecular chain coiling on the dielectric relaxation of these molecules have been recognized. © 2000 Society of Chemical Industry  相似文献   

16.
Naoki Nakajima  Yoshito Ikada 《Polymer》1995,36(26):4961-4965
The effect of antioxidants contained in poly(ethylene glycol) (PEG) on cell fusion was studied using L929 cells in the monolayer state. Hydroquinone monomethyl ether (HQME), 2-mercaptobenzimidazole (MB), butyl hydroxyanisole (BHA) and 2,6-di-(t-butyl)-4-methylphenol (BHT) were chosen from the antioxidants that have currently been used to protect commercially available PEG from oxidation. Cell culture was conducted in 40% w/w aqueous solution of PEG with a molecular weight of 3000 in the presence of different concentrations of antioxidants. BHA clearly enhanced membrane fusion of L929 cells with increasing concentration in PEG solution, whereas HQME, MB and BHT had no significant effect on cell fusion. The enhancement of cell fusion by BHA might be ascribed to balanced hydrophobicity and high water solubility in comparison with the other three antioxidants.  相似文献   

17.
Unsaturated polyesters were prepared by one-stage melt condensation of maleic anhydride, phthalic anhydride, propylene glycol, and poly(ethylene glycol)s with different molecular weight, and the properties of their castings from styrenated resins were investigated. Tensile and flexural properties decrease with the increase of molecular weight of poly(ethylene glycol), but impact strength, elongation, and water absorption have an inverse effect. This study improves the understanding of the effect of chain length of poly(ethylene glycol) in unsaturated polyester on the properties of its castings.  相似文献   

18.
The kinetics of non-isothermal crystallization of uniaxially oriented poly(ethylene terephthalate) fibers modified by poly(ethylene glycol)(PET-co-PEG) was investigated by using a DSC heating scanning method and analyzed by using a new non-isothermal equation. Two crystallization peaks appeared for PET and PET-co-PEG fibers. The kinetics parameters, such as the Avrami exponent, the activation energies of diffusion, and the weight fractions per sub-process, were obtained. Based on the Avrami exponent, peak position, and crystallization rate, the crystallization mechanism was proposed.  相似文献   

19.
The objective of this study was to investigate the effects of the incorporation of ether linkages into polylactide (PLLA) chains and the time of biodegradation on the behavior of protein adsorption. The content of poly(ethylene glycol) (PEG) in PLLA/PEG copolymers is from 4.4 to 18.3 wt %, and the length of the PEG soft segment is 1000, 2000, and 6000 daltons. The bovine serum albumin (BSA) adsorption onto the biodegradable PLLA/PEG copolymers was carried out using ultraviolet spectroscopy. The surface tension of PLLA and PLLA/PEG was measured using a contact angle. The data show that the incorporation of PEG segments makes the copolymer more polar and, therefore, leads to a reduction of protein adsorption. As the hydrolysis of polymers proceeds, both PLLA and PLLA/PEG turn out to be more polar. However, the initial compositions of degraded PLLA/PEG have a weak influence on the protein adsorption onto its hydrolyzed surface with a substantially long duration of hydrolysis. This phenomenon is attributed to the hydrophobic interaction between polar PLLA/PEG and BSA. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
The influence of poly(ethylene glycol) (PEG)‐containing additives on the extrusion behavior of ultrahigh molecular weight polyethylene/polypropylene (UHMWPE/PP) blend was studied. It was found that the addition of small amounts of PEG to UHMWPE/PP blend resulted in significant reduction of die pressure and melt viscosity, and obvious increase of the flow rate at a given die pressure, while PEG/diatomite binary additives enhanced the improvement in the processability of UHMWPE/PP blend. When pure HDPE was extruded with the die through which UHMWPE/PP/PEG blend was previously extruded, the extrusion pressure of HDPE increased with the extrusion time gradually. This meant that PEG might migrate to the die wall surface and coat it in the extrusion of UHMWPE/PP/PEG blend. FTIR spectra and SEM micrographs of the UHMWPE/PP/PEG extrudates indicated that PEG located not only at the surface but also in the interior of the extrudates. So, the external lubrication at the die wall, combined with the internal lubrication to induce interphase slippage of the blend, was proposed to be responsible for the reduction of die pressure and viscosity. In addition, an ultrahigh molecular weight polysiloxane and a fluoropolymer processing aid were used as processing aids in the extrusion of UHMWPE/PP as control, and the results showed that only minor reduction effects in die pressure and melt viscosity were achieved at their suggested loading level. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1282–1288, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号