首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 170 毫秒
1.
Codes on sparse graphs have been shown to achieve remarkable performance in point-to-point channels with low decoding complexity. Most of the results in this area are based on experimental evidence and/or approximate analysis. The question of whether codes on sparse graphs can achieve the capacity of noisy channels with iterative decoding is still open, and has only been conclusively and positively answered for the binary erasure channel. On the other hand, codes on sparse graphs have been proven to achieve the capacity of memoryless, binary-input, output-symmetric channels with finite graphical complexity per information bit when maximum likelihood (ML) decoding is performed. In this paper, we consider transmission over finite-state channels (FSCs). We derive upper bounds on the average error probability of code ensembles with ML decoding. Based on these bounds we show that codes on sparse graphs can achieve the symmetric information rate (SIR) of FSCs, which is the maximum achievable rate with independently and uniformly distributed input sequences. In order to achieve rates beyond the SIR, we consider a simple quantization scheme that when applied to ensembles of codes on sparse graphs induces a Markov distribution on the transmitted sequence. By deriving average error probability bounds for these quantized code ensembles, we prove that they can achieve the information rates corresponding to the induced Markov distribution, and thus approach the FSC capacity.  相似文献   

2.
Selection diversity based on the signal to interference ratio (SIR) is a very efficient technique that reduces fading and channel interference influence. In this paper, system performances of selection combining and correlated Weibull channels are analyzed. Fading between the diversity branches and between interferers is correlated and Weibull distributed. Very useful closed-form expressions are obtained for the output SIR's probability density function (PDF) and cumulative distribution function which is main contribution of this paper. Outage probability, the average output SIR, and the average error probability for coherent, noncoherent modulation are derived. Numerical results presented in this paper point out the effects of fading severity and correlation on the system performances.  相似文献   

3.
The rapid growth of the global electronics manufacture environment has brought about the onset of a variety of new, untested materials and processing chemicals. The interactions between substrates and processing chemicals that can occur during manufacture, storage and use must be assessed in order to determine long-term reliability. Surface insulation resistance (SIR) testing is a standard industry technique used to assess the interactions between processing chemicals (e.g., soldering fluxes) and substrates. SIR test method conditions vary in terms of the temperature and the humidity used to accelerate the normal failure modes. Typically, a 45 to 50 volt bias is applied to an interdigitated comb pattern, and periodic SIR measurements are made using a 100 volt test. Pass/fail criteria based solely on SIR electrical values, (e.g., 100 MΩ) however are inadequate. Often the electrical measurement fails to reveal the presence of surface dendrites due to contaminants related to processing chemicals. This failure occurs because the dendrite burns out between electrical readings when the circuit continues to be biased at 50 volts. A new “linear test circuit” has been developed to overcome this deficiency. The circuit uses an operational amplifier to detect the formation of a surface dendrite between electrodes on the comb pattern. When the dendrite shorts the circuit, voltage to the comb pattern is removed. Thus, the presence of the dendrite is captured electrically, and the dendrite is preserved for further analysis. This paper will present the circuit used and data showing its’ effectiveness at detecting both surface dendrites and subsurface conductive anodic filament formation.  相似文献   

4.
In this paper, theoretical lower bounds on performance of linear least‐squares (LLS) position estimators are obtained, and performance differences between LLS and nonlinear least‐squares (NLS) position estimators are quantified. In addition, two techniques are proposed in order to improve the performance of the LLS approach. First, a reference selection algorithm is proposed to optimally select the measurement that is used for linearizing the other measurements in an LLS estimator. Then, a maximum likelihood approach is proposed, which takes correlations between different measurements into account in order to reduce average position estimation errors. Simulations are performed to evaluate the theoretical limits and to compare performance of various LLS estimators. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we present a unified analysis on various signal-to-interference power ratio (SIR)-based power and rate control schemes in independent and nonidentical multipath fading channels. We study wireless direct sequence code division multiple access (DS-CDMA) systems with RAKE reception and derive new expressions for a mobile user's average SIR, average transmission power, and average data rate in terms of the probability distribution of the SIR. The performance of SIR-based combined power/rate control, power control, rate control, truncated power control, and truncated rate control schemes in independent and nonidentical Rayleigh fading channels is presented and compared. By substituting appropriate SIR distributions, this general mathematical framework can be applied to other fading channels such as the Nakagami, Rician, and lognormal channels  相似文献   

6.
Compact dual-band bandpass filter (BPF) for the 5th generation mobile communication technology (5G) radio frequency (RF) front-end applications was presented based on multilayer stepped impedance resonators (SIRs). The multilayer dual-band SIR BPF can achieve high selectivity and four transmission zeros (TZs) near the passband edges by the quarter-wavelength tri-section SIRs. The multilayer dual-band SIR BPF is fabricated on a 3-layer FR-4 substrate with a compact dimension of 5.5 mm ×5.0 mm ×1.2 mm. The measured two passbands of themultilayer dual-band SIR BPF are 3.3 GHz -3.5 GHz and 4.8 GHz -5.0 GHz with insertion loss (IL) less than 2 dB respectively. Both measured and simulated results suggest that it is a possible candidate for the application of 5G RF front-end at sub-6 GHz frequency band.  相似文献   

7.
With signal-to-interference ratio (SIR) based call admission control, a newly arriving call is accepted only if the received SIR is greater than an admission threshold. Since a large threshold often leads to unnecessary denials of the admission requests, the threshold should be selected within a certain upper bound. In this paper, the upper bounds of the admission threshold is provided, which achieves a prespecified level of admission-denying rate in power-controlled DS-CDMA mobile systems  相似文献   

8.
This paper addresses three issues in the field of ad hoc network capacity: the impact of (i) channel fading, (ii) channel inversion power control, and (iii) threshold-based scheduling on capacity. Channel inversion and threshold scheduling may be viewed as simple ways to exploit channel state information (CSI) without requiring cooperation across transmitters. We use the transmission capacity (TC) as our metric, defined as the maximum spatial intensity of successful simultaneous transmissions subject to a constraint on the outage probability (OP). By assuming the nodes are located on the infinite plane according to a Poisson process, we are able to employ tools from stochastic geometry to obtain asymptotically tight bounds on the distribution of the signal-to-interference (SIR) level, yielding in turn tight bounds on the OP (relative to a given SIR threshold) and the TC. We demonstrate that in the absence of CSI, fading can significantly reduce the TC and somewhat surprisingly, channel inversion only makes matters worse. We develop a threshold-based transmission rule where transmitters are active only if the channel to their receiver is acceptably strong, obtain expressions for the optimal threshold, and show that this simple, fully distributed scheme can significantly reduce the effect of fading.  相似文献   

9.
10.
In this paper, we present a unified approach for the computation of the outage probability, the level crossing rate (LCR), and the average outage duration (AOD) of selection combining (SC) in the presence of multiple cochannel interferences and under both minimum signal-to-interference ratio (SIR) and desired signal power constraints. We consider three selection algorithms, namely: 1) the best signal power algorithm; 2) the best SIR algorithm; and 3) the best total power (desired plus interference) algorithm. As a specific application example, we analyze the three algorithms for a low-complexity dual-branch SC receiver subject to multiple interferers over Rayleigh fading channels. When applicable, the new results are compared to those previously reported in the literature dealing with the outage probability, AOD, and LCR of 1) interference-limited systems and 2) power-limited systems. Numerical examples show that the minimum desired signal power constraint induces a floor to the outage probability, AOD, and LCR performance measures. They also show that the best SIR algorithm provides the best outage probability and AOD performance for low average SIR. On the other hand, the best signal power algorithm and the best S+I algorithm outperform the best SIR algorithm for high average SIR. It is also shown that the best SIR algorithm tends to have more outage level crossings.  相似文献   

11.
To relax the target aspect sensitivity and use more statistical information of the High Range Resolution Profiles (HRRPs), in this paper, the average range profile and the variance range profile are extracted together as the feature vectors for both training data and test data representation. And a decision rule is established for Automatic Target Recognition (ATR) based on the minimum Kullback-Leibler Distance (KLD) criterion. The recognition performance of the proposed method is comparable with that of Adaptive Gaussian Classifier (AGC) with multiple test HRRPs, but the proposed method is much more computational efficient. Experimental results based on the measured data show that the minimum KLD classifier is effective.  相似文献   

12.
This paper first calculates numerically the Symmetric Information Rate (SIR) of Cotinuous Phase Modulation (CPM) schemes over Additive White Gaussian Noise (AWGN) channel, modeling CPM and channel as a Memory-less Modulator (MM) plus a Markov Finite State Channel (FSMC), then proposes an optimal detector, which is of BCJR based Decision Feedback Detector (DFD) but non-iterative. It can achieve the SIR as the sequence length approaches infinity while the complexity is extremely low. Finally, both theoretic proof and numerical simulation are performed to show the optimality. Simulation results show that it nearly achieves the theoretic bound and outperforms the Viterbi Detector (VD) with 2dB in low Eb/N0.  相似文献   

13.
The performance of linear multiuser receivers in terms of the signal-to-interference ratio (SIR) achieved by the users has been analyzed in a synchronous CDMA system under random spreading sequences. In this paper, we extend these results to a symbol-asynchronous but chip-synchronous system and characterize the SIR for linear receivers-the matched-filter receiver the minimum mean-square error (MMSE) receiver and the decorrelator. For each of the receivers, we characterize the limiting SIR achieved when the processing gain is large and also derive lower bounds on the SIR using the notion of effective interference. Applying the results to a power controlled system, we derive effective bandwidths of the users for these linear receivers and characterize the user capacity region: a set of users is supportable by a system if the sum of the effective bandwidths is less than the processing gain of the system. We show that while the effective bandwidth of the decorrelator and the MMSE receiver is higher in an asynchronous system than that in a synchronous system, it progressively decreases with the increase in the length of the observation window and is asymptotic to that of the synchronous system, when the observation window extends infinitely on both sides of the symbol of interest. Moreover, the performance gap between the MMSE receiver and the decorrelator is significantly wider in the asynchronous setting as compared to the synchronous case  相似文献   

14.
In this article, tight and universal bounds have been derived for the interchannel interference (ICI) of an orthogonal frequency-division multiplexing (OFDM) signal resulting from Doppler spread. The universal bound depends only on the product of the maximum Doppler frequency and the OFDM symbol duration. The tight bound also depends on the variance of the Doppler spectrum. Compared with the exact ICI expressions derived by other researchers, these bounds are easier to evaluate and can provide useful insight  相似文献   

15.
The information function eh of a code is the average amount of information contained in h positions of the codewords. Upper and lower bounds on the information function of binary linear codes are given. The average value and variance of the information function over all [n, k] codes are determined,  相似文献   

16.
In this paper, we present a comprehensive performance analysis for multiple‐input multiple‐output (MIMO) systems with multiuser diversity over Rayleigh fading channels. We derive exact closed‐form expressions of the outage probability and the average bit error rate (BER) for different MIMO schemes, including the selective combining (SC), maximum ratio combining (MRC) and space‐time block codes (STBC). We also provide the explicit upper bounds on the BER performance. Finally, the mathematical formalism is verified by numeric results that study the interaction between the antenna diversity and the multiuser diversity. It is observed that the system performance is deteriorated as the number of transmit antennas increases in multiuser scenario, which is unlike the case in single‐user systems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, a study on the end‐to‐end performance of multi‐hop non‐regenerative relaying networks over independent generalized‐gamma (GG) fading channels is presented. Using an upper bound for the end‐to‐end signal‐to‐noise ratio (SNR), novel closed‐form expressions for the probability density function, the moments, and the moments‐generating function of the end‐to‐end SNR are presented. Based on these derived formulas, lower bounds for the outage and the average bit error probability (ABEP) are derived in closed form. Special attention is given to the low‐ and high‐SNR regions having practical interest as well as to the Nakagami fading scenario. Moreover, the performance of the considered system when employing adaptive square‐quadrature amplitude modulation is further analyzed in terms of the average spectral efficiency, the bit error outage, and the ABEP. Computer simulation results verify the tightness and the accuracy of the proposed bounds. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
A NEW ANALYZING APPROACH TO MODELING SLOTTED MULTIPLE ACCESS SYSTEMS   总被引:1,自引:0,他引:1  
In this paper, the analyzing approaches proposed by Zhao Dongfeng, et al.(1997) have been extensively studied. The average cyclic times of the slotted multiple access systems are analyzed by using the average cycle method. Analytic formulae for mean values of a successful period and a colliding period and an idle period are derived. The upper bounds of the system throughput with capture effect and collision resolution are provided. Finally, the simulation results of the slotted multiple access channels are given.  相似文献   

19.
A closed-form capacity quasi-optimal power allocation scheme is presented for the uplink of multimedia code-division multiple-access (CDMA) systems with randomized received signal-to-interference ratio (SIR) resulted from the errors of power control. The optimality in capacity comes from that this scheme provides class-dependent SIR margins subject to the constraint of differentiated outage requirements. The statistics of signal under imperfect power control is modeled as lognormal random variable. The objective of capacity maximization is formulated as the minimization of total average received powers since the capacity of a CDMA system is interference limited. Under this model, we first derive the necessary conditions that a capacity-optimal power allocation should satisfy. By using conservative bounds, we provide a closed-form approximate solution to this optimization problem. This approximate solution provides nearly the same admissible region for multimedia traffic under imperfect power control as the accurate solution (the optimal one) does. The closed-form quasi-optimal power allocation scheme proposed in this paper is just based on this approximate solution. By numerical example we verify our analysis and show that great capacity gain (e.g., 92% as a maximum in the example) can be achieved by our scheme over its counterpart.  相似文献   

20.
In uplink orthogonal frequency division multiple access (OFDMA), large timing offsets (TO) and/or carrier frequency offsets (CFO) of other users with respect to a desired user can cause significant multiuser interference (MUI). In this letter, we analytically characterize the degradation in the average output signal-to-interference ratio (SIR) due to the combined effect of both TOs as well as CFOs in uplink OFDMA. Specifically, we derive closed-form expressions for the average SIR at the DFT output in the presence of large CFOs and TOs. The analytical expressions derived for the signal and various interference terms at the DFT output are used to devise an interference cancelling receiver to mitigate the effect of CFO/TOinduced interferences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号