首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When mechanizing the metatheory of a programming language, one usually needs many lemmas proving structural properties of typing judgments, such as permutation and weakening. Such structural lemmas are sometimes unnecessary if we eliminate typing contexts by expanding typing judgments into their original hypothetical proofs. This technique of eliminating typing contexts, which has been around since Church (J Symb Log 5(2):56–68, 1940), is based on the view that entailment relations, such as typing judgments, are just syntactic tools for displaying only the hypotheses and conclusion of a hypothetical proof while hiding its internal structure. In this paper, we apply this technique to parts 1A/2A of the textscPoplMark challenge (Aydemir et al. 2005) and experimentally evaluate its efficiency by formalizing System F ?<?:? in the Coq proof assistant in a number of different ways. An analysis of our Coq developments shows that eliminating typing contexts produces a more significant reduction in both the number of lemmas and the count of tactics than the cofinite quantification, one of the most effective ways of simplifying the mechanization involving binders. Our experiment with System F ?<?:? suggests three guidelines to follow when applying the technique of eliminating typing contexts.  相似文献   

2.
The TreeRank algorithm was recently proposed in [1] and [2] as a scoring-based method based on recursive partitioning of the input space. This tree induction algorithm builds orderings by recursively optimizing the Receiver Operating Characteristic curve through a one-step optimization procedure called LeafRank. One of the aim of this paper is the in-depth analysis of the empirical performance of the variants of TreeRank/LeafRank method. Numerical experiments based on both artificial and real data sets are provided. Further experiments using resampling and randomization, in the spirit of bagging and random forests are developed [3, 4] and we show how they increase both stability and accuracy in bipartite ranking. Moreover, an empirical comparison with other efficient scoring algorithms such as RankBoost and RankSVM is presented on UCI benchmark data sets.  相似文献   

3.
The PoplMark challenge proposes a set of benchmarks intended to assess the usability of proof assistants in the context of research on programming languages. It is based on the metatheory of System F $_{\mathtt{<:}}$ . We present a solution to the challenge using de Bruijn indices, developed with the Coq proof assistant.  相似文献   

4.
This paper presents some tentative experiments in using a special case of rewriting rules in Mizar (Mizar homepage: http://www.mizar.org/): rewriting a term as its subterm. A similar technique, but based on another Mizar mechanism called functor identification (Korni?owicz 2009) was used by Caminati, in his paper on basic first-order model theory in Mizar (Caminati, J Form Reason 3(1):49–77, 2010, Form Math 19(3):157–169, 2011). However for this purpose he was obligated to introduce some artificial functors. The mechanism presented in the present paper looks promising and fits the Mizar paradigm.  相似文献   

5.
In a previous paper, we laid out the vision of a novel graph query processing paradigm where instead of processing a visual query graph after its construction, it interleaves visual query formulation and processing by exploiting the latency offered by the gui to filter irrelevant matches and prefetch partial query results [8]. Our recent attempts at implementing this vision [8, 9] show significant improvement in system response time (srt) for subgraph queries. However, these efforts are designed specifically for graph databases containing a large collection of small or medium-sized graphs. In this paper, we propose a novel algorithm called quble (QUery Blender for Large nEtworks) to realize this visual subgraph querying paradigm on very large networks (e.g., protein interaction networks, social networks). First, it decomposes a large network into a set of graphlets and supergraphlets using a minimum cut-based graph partitioning technique. Next, it mines approximate frequent and small infrequent fragments (sifs) from them and identifies their occurrences in these graphlets and supergraphlets. Then, the indexing framework of [9] is enhanced so that the mined fragments can be exploited to index graphlets for efficient blending of visual subgraph query formulation and query processing. Extensive experiments on large networks demonstrate effectiveness of quble.  相似文献   

6.
In this paper we study the prevalent problem of graph partitioning by analyzing the diffusion-based partitioning heuristic Bubble-FOS/C, a key component of a practical successful graph partitioner?(Meyerhenke et al. in J. Parallel Distrib. Comput. 69(9):750?C761, 2009). We begin by studying the disturbed diffusion scheme FOS/C, which computes the similarity measure used in Bubble-FOS/C and is therefore the most crucial component. By relating FOS/C to random walks, we obtain precise characterizations of the behavior of FOS/C on tori and hypercubes. Besides leading to new knowledge on FOS/C (and therefore also on Bubble-FOS/C), these characterizations have been recently used for the analysis of load balancing algorithms?(Berenbrink et al. in Proceedings of the 22nd Annual Symposium on Discrete Algorithms, pp. 429?C439, 2011). We then regard Bubble-FOS/C, which has been shown in previous experiments to produce solutions with good partition shapes and other favorable properties. In this paper we prove that it computes a relaxed solution to an edge cut minimizing binary quadratic program (BQP). This result provides the first substantial theoretical insight why Bubble-FOS/C yields good experimental results in terms of graph partitioning metrics. Moreover, we show that in bisections computed by Bubble-FOS/C, at least one of the two parts is connected. Using the aforementioned relation between FOS/C and random walks, we prove that in vertex-transitive graphs both parts must be connected components.  相似文献   

7.
We study the Cutwidth problem, where the input is a graph G, and the objective is find a linear layout of the vertices that minimizes the maximum number of edges intersected by any vertical line inserted between two consecutive vertices. We give an algorithm for Cutwidth with running time O(2 k n O(1)). Here k is the size of a minimum vertex cover of the input graph G, and n is the number of vertices in G. Our algorithm gives an O(2 n/2 n O(1)) time algorithm for Cutwidth on bipartite graphs as a corollary. This is the first non-trivial exact exponential time algorithm for Cutwidth on a graph class where the problem remains NP-complete. Additionally, we show that Cutwidth parameterized by the size of the minimum vertex cover of the input graph does not admit a polynomial kernel unless NP?coNP/poly. Our kernelization lower bound contrasts with the recent results of Bodlaender et al. (ICALP, Springer, Berlin, 2011; SWAT, Springer, Berlin, 2012) that both Treewidth and Pathwidth parameterized by vertex cover do admit polynomial kernels.  相似文献   

8.
We address the verification problem for concurrent programs modeled as multi-pushdown systems (MPDS). In general, MPDS are Turing powerful and hence come along with undecidability of all basic decision problems. Because of this, several subclasses of MPDS have been proposed and studied in the literature (Atig et al. in LNCS, Springer, Berlin, 2005; La Torre et al. in LICS, IEEE, 2007; Lange and Lei in Inf Didact 8, 2009; Qadeer and Rehof in TACAS, LNCS, Springer, Berlin, 2005). In this paper, we propose the class of bounded-budget MPDS, which are restricted in the sense that each stack can perform an unbounded number of context switches only if its depth is below a given bound, and a bounded number of context switches otherwise. We show that the reachability problem for this subclass is Pspace-complete and that LTL-model-checking is Exptime-complete. Furthermore, we propose a code-to-code translation that inputs a concurrent program \(P\) and produces a sequential program \(P'\) such that running \(P\) under the budget-bounded restriction yields the same set of reachable states as running \(P'\) . Moreover, detecting (fair) non-terminating executions in \(P\) can be reduced to LTL-Model-Checking of \(P'\) . By leveraging standard sequential analysis tools, we have implemented a prototype tool and applied it on a set of benchmarks, showing the feasibility of our translation.  相似文献   

9.
In this article, we formulate and study quantum analogues of randomized search heuristics, which make use of Grover search (in Proceedings of the 28th Annual ACM Symposium on Theory of Computing, pp. 212–219. ACM, New York, 1996) to accelerate the search for improved offsprings. We then specialize the above formulation to two specific search heuristics: Random Local Search and the (1+1) Evolutionary Algorithm. We call the resulting quantum versions of these search heuristics Quantum Local Search and the (1+1) Quantum Evolutionary Algorithm. We conduct a rigorous runtime analysis of these quantum search heuristics in the computation model of quantum algorithms, which, besides classical computation steps, also permits those unique to quantum computing devices. To this end, we study the six elementary pseudo-Boolean optimization problems OneMax, LeadingOnes, Discrepancy, Needle, Jump, and TinyTrap. It turns out that the advantage of the respective quantum search heuristic over its classical counterpart varies with the problem structure and ranges from no speedup at all for the problem Discrepancy to exponential speedup for the problem TinyTrap. We show that these runtime behaviors are closely linked to the probabilities of performing successful mutations in the classical algorithms.  相似文献   

10.
Stefan Kratsch 《Algorithmica》2012,63(1-2):532-550
It has been observed in many places that constant-factor approximable problems often admit polynomial or even linear problem kernels for their decision versions, e.g., Vertex Cover, Feedback Vertex Set, and Triangle Packing. While there exist examples like Bin Packing, which does not admit any kernel unless P = NP, there apparently is a strong relation between these two polynomial-time techniques. We add to this picture by showing that the natural decision versions of all problems in two prominent classes of constant-factor approximable problems, namely MIN F+Π1 and MAX NP, admit polynomial problem kernels. Problems in MAX SNP, a subclass of MAX NP, are shown to admit kernels with a linear base set, e.g., the set of vertices of a graph. This extends results of Cai and Chen (J. Comput. Syst. Sci. 54(3): 465–474, 1997), stating that the standard parameterizations of problems in MAX SNP and MIN F+Π1 are fixed-parameter tractable, and complements recent research on problems that do not admit polynomial kernelizations (Bodlaender et al. in J. Comput. Syst. Sci. 75(8): 423–434, 2009).  相似文献   

11.
The Parameterized Complexity of Unique Coverage and Its Variants   总被引:1,自引:0,他引:1  
In this paper we study the parameterized complexity of the Unique Coverage problem, a variant of the classic Set Cover problem. This problem admits several parameterizations and we show that all, except the standard parameterization and a generalization of it, are unlikely to be fixed-parameter tractable. We use results from extremal combinatorics to obtain the best-known kernel for Unique Coverage and the well-known color-coding technique of Alon et al. (J. ACM 42(4), 844–856, 1995) to show that a weighted version of this problem is fixed-parameter tractable. Our application of color-coding uses an interesting variation of s-perfect hash families called (k,s)-hash families which were studied by Alon et al. (J. Comb. Theory Ser. A 104(1), 207–215, 2003) in the context of a class of codes called parent identifying codes (Barg et al. in SIAM J. Discrete Math. 14(3), 423–431, 2001). To the best of our knowledge, this is the first application of (k,s)-hash families outside the domain of coding theory. We prove the existence of such families of size smaller than the best-known s-perfect hash families using the probabilistic method (Alon and Spencer in The Probabilistic Method, Wiley, New York, 2000). Explicit constructions of such families of size promised by the probabilistic method is open.  相似文献   

12.
A circle graph is the intersection graph of a set of chords in a circle. Keil [Discrete Appl. Math., 42(1):51–63, 1993] proved that Dominating Set, Connected Dominating Set, and Total Dominating Set are NP-complete in circle graphs. To the best of our knowledge, nothing was known about the parameterized complexity of these problems in circle graphs. In this paper we prove the following results, which contribute in this direction:
  • Dominating Set, Independent Dominating Set, Connected Dominating Set, Total Dominating Set, and Acyclic Dominating Set are W[1]-hard in circle graphs, parameterized by the size of the solution.
  • Whereas both Connected Dominating Set and Acyclic Dominating Set are W[1]-hard in circle graphs, it turns out that Connected Acyclic Dominating Set is polynomial-time solvable in circle graphs.
  • If T is a given tree, deciding whether a circle graph G has a dominating set inducing a graph isomorphic to T is NP-complete when T is in the input, and FPT when parameterized by t=|V(T)|. We prove that the FPT algorithm runs in subexponential time, namely $2^{\mathcal{O}(t \cdot\frac{\log\log t}{\log t})} \cdot n^{\mathcal{O}(1)}$ , where n=|V(G)|.
  相似文献   

13.
The AtMostSeqCard constraint is the conjunction of a cardinality constraint on a sequence of n variables and of n???q?+?1 constraints AtMost u on each subsequence of size q. This constraint is useful in car-sequencing and crew-rostering problems. In van Hoeve et al. (Constraints 14(2):273–292, 2009), two algorithms designed for the AmongSeq constraint were adapted to this constraint with an O(2 q n) and O(n 3) worst case time complexity, respectively. In Maher et al. (2008), another algorithm similarly adaptable to filter the AtMostSeqCard constraint with a time complexity of O(n 2) was proposed. In this paper, we introduce an algorithm for achieving arc consistency on the AtMostSeqCard constraint with an O(n) (hence optimal) worst case time complexity. Next, we show that this algorithm can be easily modified to achieve arc consistency on some extensions of this constraint. In particular, the conjunction of a set of m AtMostSeqCard constraints sharing the same scope can be filtered in O(nm). We then empirically study the efficiency of our propagator on instances of the car-sequencing and crew-rostering problems.  相似文献   

14.
The Pathwidth One Vertex Deletion (POVD) problem asks whether, given an undirected graph?G and an integer k, one can delete at most k vertices from?G so that the remaining graph has pathwidth at most 1. The question can be considered as a natural variation of the extensively studied Feedback Vertex Set (FVS) problem, where the deletion of at most k vertices has to result in the remaining graph having treewidth at most 1 (i.e., being a forest). Recently Philip et?al. (WG, Lecture Notes in Computer Science, vol.?6410, pp.?196?C207, 2010) initiated the study of the parameterized complexity of POVD, showing a quartic kernel and an algorithm which runs in time 7 k n O(1). In this article we improve these results by showing a quadratic kernel and an algorithm with time complexity 4.65 k n O(1), thus obtaining almost tight kernelization bounds when compared to the general result of Dell and van Melkebeek (STOC, pp.?251?C260, ACM, New York, 2010). Techniques used in the kernelization are based on the quadratic kernel for FVS, due to Thomassé (ACM Trans. Algorithms 6(2), 2010).  相似文献   

15.
The problems studied in this article originate from the Graph Motif problem introduced by Lacroix et al. (IEEE/ACM Trans. Comput. Biol. Bioinform. 3(4):360–368, 2006) in the context of biological networks. The problem is to decide if a vertex-colored graph has a connected subgraph whose colors equal a given multiset of colors M. It is a graph pattern-matching problem variant, where the structure of the occurrence of the pattern is not of interest but the only requirement is the connectedness. Using an algebraic framework recently introduced by Koutis (Proceedings of the 35th International Colloquium on Automata, Languages and Programming (ICALP), Lecture Notes in Computer Science, vol. 5125, pp. 575–586, 2008) and Koutis and Williams (Proceedings of the 36th International Colloquium on Automata, Languages and Programming (ICALP), Lecture Notes in Computer Science, vol. 5555, pp. 653–664, 2009), we obtain new FPT algorithms for Graph Motif and variants, with improved running times. We also obtain results on the counting versions of this problem, proving that the counting problem is FPT if M is a set, but becomes #W[1]-hard if M is a multiset with two colors. Finally, we present an experimental evaluation of this approach on real datasets, showing that its performance compares favorably with existing software.  相似文献   

16.
In the?k-Apex problem the task is to find at most?k vertices whose deletion makes the given graph planar. The graphs for which there exists a solution form a minor closed class of graphs, hence by the deep results of Robertson and Seymour (J.?Comb. Theory, Ser.?B 63(1):65–110, 1995; J.?Comb. Theory, Ser.?B 92(2):325–357, 2004), there is a cubic algorithm for every fixed value of?k. However, the proof is extremely complicated and the constants hidden by the big-O notation are huge. Here we give a much simpler algorithm for this problem with quadratic running time, by iteratively reducing the input graph and then applying techniques for graphs of bounded treewidth.  相似文献   

17.
In the k-Feedback Arc/Vertex Set problem we are given a directed graph D and a positive integer k and the objective is to check whether it is possible to delete at most k arcs/vertices from D to make it acyclic. Dom et al. (J. Discrete Algorithm 8(1):76–86, 2010) initiated a study of the Feedback Arc Set problem on bipartite tournaments (k-FASBT) in the realm of parameterized complexity. They showed that k-FASBT can be solved in time O(3.373 k n 6) on bipartite tournaments having n vertices. However, until now there was no known polynomial sized problem kernel for k-FASBT. In this paper we obtain a cubic vertex kernel for k-FASBT. This completes the kernelization picture for the Feedback Arc/Vertex Set problem on tournaments and bipartite tournaments, as for all other problems polynomial kernels were known before. We obtain our kernel using a non-trivial application of “independent modules” which could be of independent interest.  相似文献   

18.
Due to significant advances in SAT technology in the last years, its use for solving constraint satisfaction problems has been gaining wide acceptance. Solvers for satisfiability modulo theories (SMT) generalize SAT solving by adding the ability to handle arithmetic and other theories. Although there are results pointing out the adequacy of SMT solvers for solving CSPs, there are no available tools to extensively explore such adequacy. For this reason, in this paper we introduce a tool for translating FLATZINC (MINIZINC intermediate code) instances of CSPs to the standard SMT-LIB language. We provide extensive performance comparisons between state-of-the-art SMT solvers and most of the available FLATZINC solvers on standard FLATZINC problems. The obtained results suggest that state-of-the-art SMT solvers can be effectively used to solve CSPs.  相似文献   

19.
The NP-complete geometric covering problem Rectangle Stabbing is defined as follows: Given a set R of axis-parallel rectangles in the plane, a set L of horizontal and vertical lines in the plane, and a positive integer k, select at most k of the lines such that every rectangle is intersected by at least one of the selected lines. While it is known that the problem can be approximated in polynomial time within a factor of two, its parameterized complexity with respect to the parameter k was open so far. Giving two fixed-parameter reductions, one from the W[1]-complete problem Multicolored Clique and one to the W[1]-complete problem Short Turing Machine Acceptance, we prove that Rectangle Stabbing is W[1]-complete with respect to the parameter k, which in particular means that there is no hope for an algorithm running in f(k)?|RL| O(1) time. Our reductions also show the W[1]-completeness of the more general problem Set Cover on instances that “almost have the consecutive-ones property”, that is, on instances whose matrix representation has at most two blocks of 1s per row. We also show that the special case of Rectangle Stabbing where all rectangles are squares of the same size is W[1]-hard. The case where the input consists of non-overlapping rectangles was open for some time and has recently been shown to be fixed-parameter tractable (Heggernes et al., Fixed-parameter algorithms for cochromatic number and disjoint rectangle stabbing, 2009). By giving an algorithm running in (2k) k ?|RL| O(1) time, we show that Rectangle Stabbing is fixed-parameter tractable in the still NP-hard case where both these restrictions apply, that is, in the case of disjoint squares of the same size. This algorithm is faster than the one in Heggernes et al. (Fixed-parameter algorithms for cochromatic number and disjoint rectangle stabbing, 2009) for the disjoint rectangles case. Moreover, we show fixed-parameter tractability for the restrictions where the rectangles have bounded width or height or where each horizontal line intersects only a bounded number of rectangles.  相似文献   

20.
We study how to extend modal type systems based on intuitionistic modal logic S4 or S5 with a subtyping system based on intersection types. In the presence of four type constructors ${\!}\!\rightarrow \!{\!},\,{\!}\wedge {\!},\,\square {}$ , and $\Diamond {}$ , the traditional approach using a binary subtyping relation does not work well because of lack of orthogonality in subtyping rules and presence of a transitivity rule. We adopt the idea from the judgmental formulation of modal logic (Pfenning and Davies in Math Struct Comput Sci 11(4):511–540, 2001) and use subtyping judgments whose definitions express those notions internalized into type constructors directly at the level of judgments. The resultant judgmental subtyping systems admit cut rules similarly to a sequent calculus for intuitionistic logic and play a key role in designing and verifying the relational subtyping systems based on the binary subtyping relation. We use the proof assistant Coq to prove the admissibility of the cut rules and the equivalence between the two kinds of subtyping systems. The lesson from our study is that by using subtyping judgments instead of the binary subtyping relation, we can overcome the limitation usually associated with the syntactic approach to formulating subtyping systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号