首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
为改善WO3基敏感材料的气敏性能,采用微波回流法一次性合成了纳米WO3/TiO2复合材料,并研究TiO2掺杂量对用其制备的气敏元件气敏性能的影响。结果表明:此气敏元件对体积分数为100×10-6的NOx、二甲苯、H2S和丙酮气体具有较强的敏感性,掺杂w(TiO2)为20%的元件,对H2S和NOx的灵敏度分别为31.18和695.84;掺杂w(TiO2)为30%的元件,对二甲苯和丙酮的灵敏度分别为39.19和35.69。  相似文献   

2.
采用水热法合成了Co掺杂的纳米WO3气敏材料,研究了不同含量Co掺杂的WO3气敏材料的气敏性能以及环境湿度对其性能的影响。结果表明,少量Co掺杂可以提高WO3的气敏性能,Co掺杂量为质量分数0.8%的WO3基气敏元件对H2S和NOx具有很好的选择性,灵敏度分别高达183.214和1 619.726,并且该元件具有很好的抗湿性。  相似文献   

3.
聚噻吩/WO_3复合纳米材料的制备及气敏性能   总被引:1,自引:1,他引:0  
采用水合肼法制备WO3粉体,再以无水FeCl3作氧化剂,通过原位化学氧化聚合制备了不同聚噻吩(PTh)掺杂量的PTh/WO3复合纳米材料。并研究了用其制备的气敏元件的气敏性能。结果表明:气敏元件对H2S和NOx有较高的灵敏度和较好的选择性。用质量分数w(PTh)为5%的PTh/WO3复合纳米材料制备的气敏元件,在加热电压为2.25V时,对体积分数φ(NOx)为5×10–6的灵敏度可达77.14;用w(PTh)为20%的PTh/WO3复合纳米材料所制之气敏元件,在加热电压为2.43V时,对φ(H2S)为20×10–6的灵敏度达63.27。  相似文献   

4.
采用sol-gel法制备了一系列掺有SiO2的WO3纳米粉体,通过X射线衍射仪、透射电镜等测试手段分析了材料的微观结构,测试了材料的气敏性能,探讨了煅烧温度、掺杂量、工作温度等对材料气敏性能的影响。研究发现:适量SiO2的掺杂有利于提高WO3对NO2气体的灵敏度,其中SiO2掺杂量为3%(质量分数)的气敏元件,在150℃工作温度下,灵敏度达713,响应–恢复时间分别为7s与26s。对WO3的NO2气敏机理也进行了探讨。  相似文献   

5.
溶胶–凝胶法WO_3纳米粉体的气敏性能研究   总被引:6,自引:0,他引:6  
采用溶胶–凝胶法制得了不同掺杂量的TiO2-WO3(TiO2质量分数为0~5%)纳米粉体材料,利用X射线衍射仪、透射电镜等测试手段分析了材料的微观结构,并进行了气敏性能测试。研究发现:适量TiO2的掺杂可改变WO3的晶型,抑制晶粒的生长,提高粉体材料的气敏性能,其中掺杂量为3%的烧结型气敏元件在220℃时对汽油有较高的灵敏度,线性检测范围较宽,且抗干扰能力强。  相似文献   

6.
采用两步法制备氧化锌纳米片/聚苯胺(ZnO/PANI)复合材料,首先制备ZnO纳米片,然后以此为载体,通过苯胺单体的原位聚合得到最终产物。通过XRD、FTIR、FESEM、氮气吸附-脱附和紫外-可见漫反射对合成材料进行表征,研究了其紫外激发室温气敏性能,分析了可能的紫外激发气敏机理。结果表明,在紫外光激发下,ZnO/PANI复合材料实现了室温检测,乙醇浓度100×10~(-6)(体积分数)时,灵敏度较高达到17.6,响应和恢复时间均在30 s以内。  相似文献   

7.
ZnS掺杂WO_3纳米粉体的制备及H_2S气敏性能   总被引:1,自引:1,他引:0  
采用共沉淀法制备了w(ZnS)为0~0.2%的ZnS-WO3纳米粉体,利用X射线衍射仪分析了粉体的微观结构,探讨了ZnS掺杂量、工作温度对由所制粉体制成的气敏元件的气敏性能的影响。研究发现:适量的ZnS掺杂抑制了WO3晶粒的生长,提高了粉体对H2S的灵敏度。其中,掺杂ZnS的质量分数为1.0%的烧结型气敏元件,在160℃时对体积分数为0.001%的H2S的灵敏度达到87,响应时间7s,恢复时间12s。  相似文献   

8.
气敏元件室温光激发气敏性能研究   总被引:1,自引:0,他引:1  
研究了WO3掺杂的ZnO基气敏元件在紫外(UV)光激发下,对乙醇气体的室温气敏性能。结果表明:在UV光照射下,各元件在室温下对体积分数为100×10–6的乙醇气体显示了很好的光敏、气敏性能,响应、恢复时间均在8s以内,其中以掺杂X(WO3)为1%的元件W(1)为最佳,从而实现了室温下的气敏测试。  相似文献   

9.
采用溶胶凝胶法制备了纯TiO2和掺杂质量分数为5%,7%和9%CuO的TiO2纳米粉体,并对样品进行了不同温度(500,700和900℃)的退火处理。通过涂敷法制备成气敏元件,利用XRD和SEM对样品的结构和表面形貌进行了表征,并利用气敏测试系统检测其气敏特性。研究了CuO掺杂质量分数和退火温度对TiO2厚膜气敏性能的影响,进一步讨论了TiO2厚膜的气敏机理。结果表明:CuO的掺杂有效抑制了TiO2晶粒的生长,增加了对光子的利用率,降低了工作温度,提高了气敏特性。700℃退火后,质量分数为7%的CuO掺杂TiO2样品的结晶尺寸达到14.5 nm,气敏元件表现出对丙酮蒸汽单一的选择性,灵敏度为3 567,响应和恢复时间均为2 s。  相似文献   

10.
分别用成核/晶化隔离法和化学共沉淀法制备了ZnO纳米颗粒。用XRD、DSC-TGA表征其微结构和成相温度,静态配气法研究两种方法所制备ZnO纳米颗粒的气敏性能差异。结果表明:成核/晶化隔离法所制备的ZnO纳米颗粒相对于化学共沉淀法制备的ZnO纳米颗粒对酒精和汽油具有更好的气敏性能。290℃工作温度下,成核/晶化隔离法制备的ZnO纳米颗粒对体积分数均为50×10–6的酒精和汽油灵敏度分别高达34和68,远高于化学共沉淀法制备的ZnO纳米颗粒的17和28。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号