首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
A method for evaluating the heat resistance of structural ceramics according to which the thermally stressed state is created by blowing a directed air flow into the tip of a notch in a heated prismatic specimen is presented. For this purpose a special complexly shaped notch is formed in order to provide free inflow of the air to its tip. The radius of curvature of the notch in alumina ceramics is 5 Μm. In blowing, the heat is removed predominantly from a local volume at the tip of the notch, thus providing a “local” thermal shock. The heat resistance of alumina ceramics obtained by sintering and reaction bonding is studied. The mechanical properties of Al2O3 tend to improve after a local thermal shock. The tendency is proved by testing a statistically reliable sample of unnotched specimens by the conventional method for determining the heat resistance. This tendency can be explained by “curing” of some of the defects (commensurable with the elements of the substructure) in densely sintered ceramics under the effect of thermal stresses. This was established due to the low scattering of the values of the mechanical properties measured in testing a sample of specimens with a special notch. It cannot be detected in tests of unnotched specimens within the same sample. A heat cycle of “850‡C-water” worsens the mechanical properties of notched and unnotched specimens due to the initiated microfracture. Translated from Ogneupory i Tekhnicheskaya Keramika, Nos. 1–2, pp. 14–19, January–February, 1999.  相似文献   

2.
The measured values of fracture toughness for ceramics are closely correlated with the sharpness of notch tips, which in turn influences the accurate measurement of fracture toughness. Here, typical structural ceramics, i.e., 3 mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP), ZrB2, ZrB2-SiC and ZrB2-SiC-Grapite, were used for the measurement of fracture toughness, and the effect of notch tip radius on the fracture toughness values of these typical structural ceramics was investigated. Ultra-sharp notches with a tip radius less than 1 μm can be fabricated by laser, lower than the critical notch tip radius in ceramics below which the fracture toughness value almost remains constant, and improved accuracy and consistency of fracture toughness measurement can be obtained by this method compared with traditional method.  相似文献   

3.
The thermal stability of ceramic materials is considered from the standpoint of fracture mechanics as a property determined by the capacity of the structure to resist the appearance and propagation of cracks on critical defects under the effect of thermal stresses. A method is suggested for comparative evaluation of the thermal stability of ceramics according to which specimens with a notch simulating a structural defect responsible for fracture are subjected to thermal shock. The absence of induced defects in the region adjoining the tip of the notch is a necessary condition for providing reproducible results. The resistance to thermal shock is determined from the relative decrease in the crack resistance after the thermal shock, the “insensitivity” of the structure to defects, and the degree of their accumulation in the region of the tip of the notch as a result of the thermal shock. The first and second criteria for evaluation of thermal stability involve the coefficient of relaxation of thermal stresses and the ultimate bending strength of the notched specimen. A ceramics of ZrO2 partially stabilized by 3 and 12% Y2O3 and a cermet with a composition of ZrO2-3 vol.% Y2O3-50 vol.% Cr are chosen for studying thermal stability by the method developed. Calculated results on the thermal stability of the cermet are compared with results obtained directly by thermocycling with variation of the metal content from 10 to 50%. The maximum mechanical properties are shown to correspond to a metal content of 40% due to formation of double-skeleton structure in the cermet. The method can be helpful for evaluating the initial stage of fracture caused by a thermal shock in structural ceramics. Translated from Ogneupory i Tekhnicheskaya Keramika, No. 3, pp. 5–10, March, 1998.  相似文献   

4.
Laminated ZrB2-SiC ceramics with residual surface compression were prepared by stacking layers with different SiC contents. The maximum apparent fracture toughness of these laminated ZrB2-SiC ceramics was 10.4 MPam1/2, which was much higher than that of monolithic ZrB2-SiC ceramics. The theoretical predictions showed that the apparent fracture toughness was strongly dependent on the position of the notch tip, which was confirmed by the SENB tests. Moreover, laminated ceramics showed a higher fracture load when the notch tip located in the compressive layer, whereas showed a lower fracture load as the notch tip within the tensile layer. The toughening effect of residual compressive stresses was verified by the appearance of crack deflection and pop-in event. The influence of geometrical parameters on the apparent fracture toughness and residual stresses was analyzed. The results of theoretical calculation indicated that the highest residual compressive stress did not correspond to the highest apparent fracture toughness.  相似文献   

5.
The present study focuses on the sintering of silicon carbide-based ceramics (SiC) by liquid phase sintering (LPS) followed by characterization of the produced ceramics. AlN/Re2O3 mixtures were used as additives in the LPS process. In the first step, the LPS-SiC materials were produced in a graphite resistance furnace in the form of discs at different temperatures. The conditions with the best results regarding real density and relative density were taken as reference for sintering in the form of prismatic bars. In the second step, these samples were evaluated regarding fracture toughness (KIC), by the Single Edge V Notch Beam – SEVNB – method, and flexural strength. KIC behavior was evaluated according to the depth and curvature radius of the notches. Reliable KIC values were presented when the ceramic displayed a small curvature radius at the notch tip. When the radius was large, it did not maintain the square root singularity of the notch tip. Tests were carried out to determine KIC values in atmospheric air and water. KIC results were lower in water than air, with a decrease ranging between 2.56% and 11.26%. The observations indicated a direct grain size correlation between KIC values and fracture strength of the SiC ceramics.  相似文献   

6.
J.P.F InbergR.J Gaymans 《Polymer》2002,43(15):4197-4205
The influence of notch tip radius in the range of 1-0.002 mm was studied on polycarbonate (PC) and co-continuous PC/acrylonitrile-butadiene-styrene (ABS). Co-continuous PC/ABS blend was obtained by mixing PC and ABS containing 15% polybutadiene (PB) in a twin screw extruder. PC and PC/ABS specimens were injection moulded into test bars. A notch was milled-in, with notch tip radius of 1, 0.5, 0.25 and 0.1 mm. Very sharp notches with a radius of 0.015-0.002 mm were obtained with an Excimer LAZER. The specimens were tested by single edge notch tensile tests at 1 m/s (apparent strain rate 28.5 s−1) and at different temperatures (−60 to 130 °C). Initiation and propagation phases of the fracture process were monitored and the brittle-ductile transition temperature (Tbd) determined. It appeared that the amount of deformation in the initiation phase of fracture was extremely sensitive to notch tip radius. Temperature measurements of the deformation zone showed that the size of the deformation zone decreased with decreasing notch radius. The Tbd of PC increased rapidly with decreasing notch radius, until the glass transition temperature was approached. Remarkably, for PC the notch sensitivity was strongest around the standard notch tip radius of 0.25 mm. This means that a small deviation of this standard notch leads to large deviations in the results. The PC/ABS blend was much less sensitive to notch tip radius and the Tbd was almost constant. Thus the sensitivity of PC to sharp defects can be neutralised by adding ABS.  相似文献   

7.
The fracture toughness measurement of ceramics is based on notched specimens. If the notch-root radius is too large, it leads to overestimate the actual fracture toughness of the material. It is then necessary to control the notch shape and to machine it carefully in order to have a root-radius small enough (<10 μm) to be below the sensitivity threshold of the material. Then, the notch confounds with a sharp crack. Alternatively, it is proposed in this work to bring a correction to the measured fracture toughness depending on the notch-root radius. No restriction is brought to this radius except that it must be small compared to the notch length.  相似文献   

8.
As a new type of notching approach, laser notching method always neglecting the significant impact of equivalent notch angle (θ) on fracture toughness results, although it has successfully solved the problem of introducing sharp enough V-notches in ceramics. Here, porous ZrB2 and dense ZrB2-SiC ceramics are taken as the experimental targets, and the effect of θ on the fracture toughness values of these typical ceramics is investigated. To measure the fracture toughness accurately, the θ should be less than 60°, namely, the laser notch depth should be larger than the traditional U-groove root radius. Nanosecond laser notching method shows great advantages in high notch depth (easy to reach 300 μm) and sufficient accuracy (tip radius less than 1 μm), and is deemed to have a good prospect of standardization.  相似文献   

9.
A nano-scale crack tip around 500 nm wide introduced by femtosecond laser still affects the accuracy of fracture toughness KIC measurements of 3Y-TZP zirconia ceramics with average grain size G from 200 to 500 nm. A simple formula was proposed to estimate the additive effect of crack-tip damage zones from an infinitely sharp crack to a nano-scale blunt notch. The error in fracture toughness measurements is less than 8 % if the nano-scale crack-tip width < 0.5·G. The intrinsic KIC can be deduced from the simple formula if the nano-scale crack tip > 0.5·G. This study shows the same KIC was deduced from two different sets of 3Y-TZP measurements with nano- and micro-scale notches of 500 nm and 18 µm wide. Furthermore, the simple formula specifies the relation between the fracture toughness KIC and intrinsic strength ft via grain size G, which means KIC can also be estimated from ft and G without testing pre-cracked specimens. KIC values of 3Y-TZP from specimens with and without pre-cracks were compared.  相似文献   

10.
The fracture toughness of a hot-pressed silicon nitride/silicon carbide (Si3N4/SiC) nanocomposite and reference monolithic Si3N4 has been investigated in four-point bending at 1350°C in air, using different loading rates (0.01-1 mm/min). Single-edge V-notched bend specimens that were prepared by polishing the notch tip to a radius of <10 µm, using 1 µm diamond paste, were used for the fracture toughness measurement. Slow crack growth (SCG) prior to catastrophic failure was detected at all applied loading rates at 1350°C. The fracture toughness at 1350°C, as calculated using the actual crack size measured on the fracture surface after the bend test, increased in both ceramics with decreasing loading rate and increasing area of the SCG region.  相似文献   

11.
A round bar specimen and a square bar specimen cut out from medium-density polyethylene pipes with a notch were made and a fatigue test was conducted to cause a brittle fracture. The initiation and growth of a craze and crack at the tip of a notch was observed. In the range where loading cycles are few and displacement of the specimen does not increase, the craze prior to crack initiation occurs. Also, the effect of frequency was investigated. The pure creep failure and the fatigue failure at low frequency were compared. The lower the frequency, the smaller the reciprocal of the actual loading time Tf becomes. It is also found that this tensile fatigue test is a useful test method to assure the quality of pipes.  相似文献   

12.
Fracture toughness of submicron grain size tetragonal zirconia polycrystals doped with 3 mol% yttria (3Y-TZP) is measured by the single edge V-notch beam (SEVNB) method from a shallow sharp notch produced by ultra-short pulsed femtolaser ablation (UPLA) on the surface of a bending bar. It is shown that the radius of the notch tip achieved is in the submicron range and the damaged volume in front of the notch tip is characterized by using focus ion beam milling and scanning electron microscopy. It consists of a narrow fully microcracked region less than ∼4 μm wide and ∼15 μm deep in front of the notch. If the extension of this region and the length of the notch are used in the determination of the fracture toughness (KIc) in the four bending test, the values obtained for submicron grain size 3Y-TZP are in agreement those obtained by using very sharp cracks. It is concluded that the SEVNB testing method with a sharp notch induced by UPLA may be used for KIc testing of submicron grain size ceramics.  相似文献   

13.
In this work, we suggest a new and simple method named single gradient notched beam (SGNB) method for determining the fracture toughness of Ti3Si(Al)C2 and Al2O3 with four-point bending specimens. For the specimen with a gradient notch, a sharp natural crack will initiate and extends from the tip of the triangle under increasing load. Based on the straight through crack assumption or on the slice model, the stress intensity factor coefficient for this notched beam was derived. The fracture toughness can be calculated from the maximum load and the minimum of the stress intensity factor coefficient without knowing the crack length. To verify the feasibility and reliability of this suggested method, the SGNB method and two other conventional methods, e.g. the chevron notched beam (CNB) method and single edge notched beam (SENB) method, were performed to determine the fracture toughness of Ti3Si(Al)C2 and Al2O3. The measured fracture toughness values obtained from the SGNB method agreed well with those from conventional fracture toughness tests.  相似文献   

14.
Unlike fracture toughness, the notch fracture toughness of a ceramic is not a constant; rather, it increases with the notch-root radius ρ in a notched specimen. In this study, by analyzing the fracture measurements of eight different notched ceramics with an average grain size G of 3–40 μm, a simple model describing the relation between the notch fracture toughness and fracture toughness is proposed as a function of the relative notch-root radius ρ/G. The normal distribution is incorporated to consider the inevitable scatter in measurements where fracture mechanisms and errors are present. The results demonstrate that the model can effectively predict the quasi-brittle fracture variation trend for ceramics, including the upper and lower bounds, with 96% reliability, from a normal distribution; thus, it can address virtually all of the experimental data. We also determined that the notch fracture toughness approximates the fracture toughness if ρG.  相似文献   

15.
A simple method of measuring Mode I fracture toughness, KIC, of glass using the double cantilever beam (DCB) geometry is presented. An inert atmosphere is created at the crack tip to prevent subcritical crack growth and enable “pinning” the crack while the specimen is loaded to failure. This was achieved experimentally using liquid toluene or a glovebox with dry argon. KIC values measured by this method showed good agreement with published literature values for selected glasses. Applicability of the analytical stress intensity factor solution based on crack length, crack front curvature, and the height of the crack guiding groove are confirmed through experimental data and finite element analysis. The experimentally observed crack front curvature, which leads near the edges for small groove heights and leads in the center for larger groove heights, is predicted from the geometry of the DCB specimen for a linear elastic solid through finite element modeling.  相似文献   

16.
The graphite-doped SiC ceramics with net-like structure was fabricated via tape casting and pressureless sintering. The ceramics exhibited a step-like fracture mode, which could be attributed to the net-like structure composed of long columnar SiC grains, layered graphite, and the three-modal pore distribution. The formation of warped epitaxial graphene and large size graphite could be attributed to the pyrolysis of organics in the tape casting system. In the net-like structure, the SiC grains provide the high strength, whereas the layered graphite and three-modal pores were used to deflect the cracks and release the stress at the tip, following the crack-tip-shielding mechanism. The sample with a net-like structure exhibited a combination of a variety of extrinsic toughening mechanisms, such as crack deflection, crack bridging, crack branching and delamination, pull-out, and rupture of layered graphite, which led to improved fracture toughness of 7?MPa?m1/2, flexural strength of 400?MPa, and (work of fracture) WOF of 3.3?kJ?m?2. When increasing the graphite content, the electrical conductivity of the graphite-doped SiC ceramics significantly increased from 7.15?×?10?4 to 216 S/m. The high shielding effectiveness of 34.1?dB was due to the multi-absorption on the various surfaces during the multi-reflection by the net-like structure.  相似文献   

17.
The combined effect of varying loading rate and test temperature on the mode II interlaminar fracture properties of AS4/carbon fiber reinforced PEEK has been investigated. End notch flexure tests have shown that this thermoplastic‐based composite system offers a very high value of interlaminar fracture toughness at room temperature. Increasing the test temperature leads to a reduction in the mode II interlaminar fracture toughness of the composite, with the value at 150°C being approximately one half of the room temperature value. In contrast, increasing the crosshead displacement rate has been shown to increase the value of GIIc by up to 25%. A more detailed understanding of the effect of varying temperature and loading rate on the failure mechanisms occurring at the crack tip of these interlaminar fracture specimens has been achieved using the double end notch flexure (DENF) geometry. Here, extensive plastic flow within the crack tip region was observed in all specimens. It is believed that the rate sensitivity of GIIc reflects the rate‐dependent characteristics of the thermoplastic resin.  相似文献   

18.
Effect of deformation rate on the ductile–brittle transition behavior for polycarbonate (PC) with different molar mass, notch radius, and rubber content has been investigated. PC with higher molar mass, notch radius, or rubber-modification possesses a higher critical strain rate when the ductile–brittle transition occurs. Whether a notched specimen will fail in a ductile mode or a brittle mode is already decided before the onset of the crack initiation. If size of the precrack plastic zone exceeds a critical level prior to onset of crack initiation, the crack extension developed later will propagate within the plastic zone and result in a ductile mode fracture. The precrack elastic storage energy, the input energy subtracting the hysteresis energy, is the main driving force to strain the crack tip for crack initiation. The precrack hysteresis energy (directly related to the precrack plasticity) increases with the decrease of the applied strain rate. Therefore, the strain rate is also closely related to the size of the precrack plastic zone. If the strain rate is lower than the critical strain rate, the specimen is able to grow a precrack plastic zone exceeding the critical plastic zone and results in a ductile mode fracture. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 655–665, 1997  相似文献   

19.
The fracture stress (σN) of a notched specimen from polycrystalline material is influenced by notch geometry and material microstructure. In this paper, by analyzing measurements on notched specimens from materials with different average grain sizes (G), a unified model is proposed to describe notch geometry effect on σN and its relation to G. An analytical relation between stress concentration factor and notch geometry parameters is determined, and normal distribution theory is incorporated into the fracture model to describe the inevitable fracture scatter due to material heterogeneity and machining & testing errors. The results show that the model can well predict σN of notched specimens made from various polycrystalline materials.  相似文献   

20.
《Ceramics International》2023,49(3):4403-4411
B4C-20 wt% TiB2 ceramics were fabricated by hot pressing B4C and ball-milled TiB2 powder mixtures. The effects of the TiB2 particle size on the microstructure and mechanical properties were investigated. The results showed that the TiB2 particle size played an important role in the mechanical properties of the B4C–TiB2 ceramics. In addition, SiO2 introduced by ball milling was beneficial for densification but detrimental to the mechanical properties of the B4C–TiB2 ceramics. The typical values of relative density, hardness, flexural strength, and fracture toughness of the ceramics were 99.20%, 35.22 GPa, 765 MPa, and 7.69 MPa m1/2, respectively. The toughening mechanisms of the B4C–TiB2 ceramics were explained by crack deflection and crack branching. In this study, the effects of high pressure and temperature caused liquefying SiO2 to migrate to the surface of B4C–TiB2 and react with diffused carbon source in the graphite foil to form a 30 μm thick SiC layered structure, which improved the high-temperature oxidation resistance of the material. The unique SiC layered structure overcame the insufficient oxidation resistance of B4C and TiB2, thereby improving the oxidation resistance of the ceramics under high-temperature service conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号