首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nemes P  Barton AA  Li Y  Vertes A 《Analytical chemistry》2008,80(12):4575-4582
Mass spectrometry in conjunction with atmospheric pressure ionization methods enables the in vivo investigation of biochemical changes with high specificity and sensitivity. Laser ablation electrospray ionization (LAESI) is a recently introduced ambient ionization method suited for the analysis of biological samples with sufficient water content. With LAESI mass spectrometric analysis of chimeric Aphelandra squarrosa leaf tissue, we identify the metabolites characteristic for the green and yellow sectors of variegation. Significant parts of the related biosynthetic pathways (e.g., kaempferol biosynthesis) are ascertained from the detected metabolites and metabolomic databases. Scanning electron microscopy of the ablated areas indicates the feasibility of both two-dimensional imaging and depth profiling with a approximately 350 microm lateral and approximately 50 microm depth resolution. Molecular distributions of some endogenous metabolites show chemical contrast between the sectors of variegation and quantitative changes as the ablation reaches the epidermal and mesophyll layers. Our results demonstrate that LAESI mass spectrometry opens a new way for ambient molecular imaging and depth profiling of metabolites in biological tissues and live organisms.  相似文献   

2.
Experiments were performed to examine the feasibility of mass spectrometry (MS) depth profiling of animal tissue by ~75 fs, 800 nm laser pulses to expose underlying layers of tissue for subsequent MS analysis. Matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) was used to analyze phospholipids and proteins from both intact bovine eye lens tissue and tissue ablated by ultrashort laser pulses. Laser desorption postionization mass spectrometry (LDPI-MS) with 10.5 eV single photon ionization was also used to analyze cholesterol and other small molecules in the tissue before and after laser ablation. Scanning electron microscopy was applied to examine the ablation patterns in the tissue and estimate the depth of the ablation craters. Ultrashort pulse laser ablation was found to be able to remove a layer of several tens of micrometers from the surface of eye lens tissue while leaving the underlying tissue relatively undamaged for subsequent MS analysis. MS analysis of cholesterol, phospholipids, peptides, and various unidentified species did not reveal any chemical damage caused by ultrashort pulse laser ablation for analytes smaller than ~6 kDa. However, a drop in intensity of larger protein ions was detected by MALDI-MS following laser ablation. An additional advantage was that ablated tissue displayed up to an order of magnitude higher signal intensities than intact tissue when subsequently analyzed by MS. These results support the use of ultrashort pulse laser ablation in combination with MS analysis to permit depth profiling of animal tissue.  相似文献   

3.
The ambient mass spectrometry technique, desorption electrospray ionization mass spectrometry (DESI-MS), is applied for the rapid identification and spatially resolved relative quantification of chlorophyll degradation products in complex senescent plant tissue matrixes. Polyfunctionalized nonfluorescent chlorophyll catabolites (NCCs), the "final" products of the chlorophyll degradation pathway, are detected directly from leaf tissues within seconds and structurally characterized by tandem mass spectrometry (MS/MS) and reactive-DESI experiments performed in situ. The sensitivity of DESI-MS analysis of these compounds from degreening leaves is enhanced by the introduction of an imprinting technique. Porous polytetrafluoroethylene (PTFE) is used as a substrate for imprinting the leaves, resulting in increased signal intensities compared with those obtained from direct leaf tissue analysis. This imprinting technique is used further to perform two-dimensional (2D) imaging mass spectrometry by DESI, producing well-resolved images of the spatial distribution of NCCs in senescent leaf tissues.  相似文献   

4.
A sensitive and simultaneous analytical technique for visualizing multiple endogenous molecules is now strongly required in biological science. Here, we show the applicability of a matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) system for getting chemically diverse metabolite profiles on a single-mammalian cell. This ultrahighly sensitive MALDI-MS technique enabled a spatially resolved detection of a broad range of metabolites including nucleotides, cofactors, phosphorylated sugars, amino acids, lipids, and carboxylic acids in normal mouse brain tissue with their unique distributions. Furthermore, a combination of MS imaging and metabolic pathway analysis of a rat transient middle cerebral artery occlusion model visualized a spatiotemporal behavior of metabolites in the central metabolic pathway regulated by an ischemia reperfusion. These findings highlight potential applications of an in situ metabolomic imaging technique to visualize spatiotemporal dynamics of the tissue metabolome, which will facilitate biological discovery in both preclinical and clinical settings.  相似文献   

5.
A new approach is described for imaging mass spectrometry analysis of drugs and metabolites in tissue using matrix-assisted laser desorption ionization-Fourier transform ion cyclotron resonance (MALDI-FTICR). The technique utilizes the high resolving power to produce images from thousands of ions measured during a single mass spectrometry (MS)-mode experiment. Accurate mass measurement provides molecular specificity for the ion images on the basis of elemental composition. Final structural confirmation of the targeted compound is made from accurate mass fragment ions generated in an external quadrupole-collision cell. The ability to image many small molecules in a single measurement with high specificity is a significant improvement over existing MS/MS based technologies. Example images are shown for olanzapine in kidney and liver and imatinib in glioma.  相似文献   

6.
Application of mass spectrometry imaging (MS imaging) analysis to single cells was so far restricted either by spatial resolution in the case of matrix-assisted laser desorption/ionization (MALDI) or by mass resolution/mass range in the case of secondary ion mass spectrometry (SIMS). In this study we demonstrate for the first time the combination of high spatial resolution (7 μm pixel), high mass accuracy (<3 ppm rms), and high mass resolution (R = 100?000 at m/z = 200) in the same MS imaging measurement of single cells. HeLa cells were grown directly on indium tin oxide (ITO) coated glass slides. A dedicated sample preparation protocol was developed including fixation with glutaraldehyde and matrix coating with a pneumatic spraying device. Mass spectrometry imaging measurements with 7 μm pixel size were performed with a high resolution atmospheric-pressure matrix-assisted laser desorption/ionization (AP-MALDI) imaging source attached to an Exactive Orbitrap mass spectrometer. Selected ion images were generated with a bin width of Δm/z = ±0.005. Selected ion images and optical fluorescence images of HeLa cells showed excellent correlation. Examples demonstrate that a lower mass resolution and a lower spatial resolution would result in a significant loss of information. High mass accuracy measurements of better than 3 ppm (root-mean-square) under imaging conditions provide confident identification of imaged compounds. Numerous compounds including small metabolites such as adenine, guanine, and cholesterol as well as different lipid classes such as phosphatidylcholine, sphingomyelin, diglycerides, and triglycerides were detected and identified based on a mass spectrum acquired from an individual spot of 7 μm in diameter. These measurements provide molecularly specific images of larger metabolites (phospholipids) in native single cells. The developed method can be used for a wide range of detailed investigations of metabolic changes in single cells.  相似文献   

7.
An infrared laser was used to ablate material from tissue sections under ambient conditions for direct collection on a matrix assisted laser desorption ionization (MALDI) target. A 10 μm thick tissue sample was placed on a microscope slide and was mounted tissue-side down between 70 and 450 μm from a second microscope slide. The two slides were mounted on a translation stage, and the tissue was scanned in two dimensions under a focused mid-infrared (IR) laser beam to transfer material to the target slide via ablation. After the material was transferred to the target slide, it was analyzed using MALDI imaging using a tandem time-of-flight mass spectrometer. Images were obtained from peptide standards for initial optimization of the system and from mouse brain tissue sections using deposition either onto a matrix precoated target or with matrix addition after sample transfer and compared with those from standard MALDI mass spectrometry imaging. The spatial resolution of the transferred material is approximately 400 μm. Laser ablation sample transfer provides several new capabilities not possible with conventional MALDI imaging including (1) ambient sampling for MALDI imaging, (2) area to spot concentration of ablated material, (3) collection of material for multiple imaging analyses, and (4) direct collection onto nanostructure assisted laser desorption ionization (NALDI) targets without blotting or ultrathin sections.  相似文献   

8.
Laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) was used to produce images of element distribution in 20-microm thin sections of human brain tissue. The sample surface was scanned (raster area approximately 80 mm(2)) with a focused laser beam (wavelength 213 nm, diameter of laser crater 50 microm, and laser power density 3 x 10(9) W cm(-2)) in a cooled laser ablation chamber developed for these measurements. The laser ablation system was coupled to a double-focusing sector field ICPMS. Ion intensities of 31P+, 32S+, 56Fe+, 63Cu+, 64Zn+, 232Th+, and 238U+ were measured within the area of interest of the human brain tissue (hippocampus) by LA-ICPMS. The quantitative determination of copper, zinc, uranium, and thorium distribution in thin slices of the human hippocampus was performed using matrix-matched laboratory standards. In addition, a new arrangement in solution-based calibration using a micronebulizer, which was inserted directly into the laser ablation chamber, was applied for validation of synthetic laboratory standard. The mass spectrometric analysis yielded an inhomogeneous distribution (layered structure) for P, S, Cu, and Zn in thin brain sections of the hippocampus. In contrast, Th and U are more homogeneously distributed at a low-concentration level with detection limits in the low-nanogram per gram range. The unique analytical capability and the limits of LA-ICPMS will be demonstrated for the imaging of element distribution in thin cross sections of brain tissue from the hippocampus. LA-ICPMS provides new information on the spatial element distribution of the layered structure in thin sections of brain tissues from the hippocampus.  相似文献   

9.
Suh MJ  Tang XH  Gudas LJ 《Analytical chemistry》2006,78(16):5719-5728
Retinoids [retinol (vitamin A) and its metabolites] function in the visual cycle, embryonic development, cellular differentiation, and tissue homeostasis. Notwithstanding pivotal roles of retinoids in mammals, the limited number of commercially available retinoid standards is a major roadblock to identifying and studying retinoids in biological samples. Therefore, a need exists for improved methods to identify retinoid metabolites. We analyzed polar and nonpolar retinoids, including retinoic acid, retinol, retinyl acetate, and other retinyl esters, using postsource decay laser desorption/ionization mass spectrometry (PSD-LDI MS). PSD analysis was employed to examine the PSD fragmentation patterns of retinoids, as these patterns can be used for the characterization of retinoids from biological samples without the need for matching retention time with a commercially available or synthetic retinoid. Mechanisms for the formation of these PSD fragment ions are proposed. The feasibility of employing PSD after HPLC separation was demonstrated by characterizing the endogenous retinoids in canine kidney epithelial cell extracts and in mouse lung. We show that the PSD-LDI MS approach described here can facilitate the identification and characterization of retinoids from mammalian cells and tissues.  相似文献   

10.
Desorption electrospray ionization tandem mass spectrometry (DESI-MS/MS) and whole-body autoradiography (WBA) were used for chemical imaging of whole-body thin tissue sections of mice intravenously dosed with propranolol (7.5 mg/kg). DESI-MS/MS imaging utilized selected reaction monitoring detection performed on an AB/MDS SCIEX 4000 QTRAP mass spectrometer equipped with a prototype extended length particle discriminator interface. Propranolol images of the tissue sections using DESI-MS/MS were obtained at surface scan rates of 0.1, 0.5, 2, and 7 mm/s. Although signal decreased with increasing scan rate, useful whole-body images for propranolol were obtained from the tissues even at 7 mm/s, which required just 79 min of analysis time. Attempts to detect and image the distribution of the known propranolol metabolites were unsuccessful. Regions of the tissue sections showing the most radioactivity from WBA sections were excised and analyzed by high-performance liquid chromatography (HPLC) with radiochemical detection to determine relative levels of propranolol and metabolites present. Comparison of the DESI-MS/MS signal for propranolol and the radioactivity attributed to propranolol from WBA sections indicated nominal agreement between the two techniques for the amount of propranolol in the brain, lung, and liver. Data from the kidney showed an unexplained disparity between the two techniques. The results of this study show the feasibility of using DESI-MS/MS to obtain useful chemical images of a drug in whole-body thin tissue sections following drug administration at a pharmacologically relevant level. Further optimization to improve sensitivity and enable detection of the drug metabolites will be among the requirements necessary to move DESI-MS/MS chemical imaging forward as a practical tool in drug discovery.  相似文献   

11.
Beyond the implementation of the photoacoustic effect to photoacoustic imaging and laser ultrasonics, this study demonstrates a novel application of the photoacoustic effect for high‐precision cavitation treatment of tissue using laser‐induced focused ultrasound. The focused ultrasound is generated by pulsed optical excitation of an efficient photoacoustic film coated on a concave surface, and its amplitude is high enough to produce controllable microcavitation within the focal region (lateral focus <100 µm). Such microcavitation is used to cut or ablate soft tissue in a highly precise manner. This work demonstrates precise cutting of tissue‐mimicking gels as well as accurate ablation of gels and animal eye tissues.  相似文献   

12.
An atmospheric pressure (AP) MALDI imaging interface was developed for an orthogonal acceleration time-of-flight mass spectrometer and utilized to analyze peptides, carbohydrates, and other small biomolecules using infrared laser excitation. In molecular imaging experiments, the spatial distribution of mock peptide patterns was recovered with a detection limit of approximately 1 fmol/pixel from a variety of MALDI matrixes. With the use of oversampling for the image acquisition, a spatial resolution of 40 microm, 5 times smaller than the laser spot size, was achieved. This approach, however, required that the analyte was largely removed at the point of analysis before the next point was interrogated. Native water in plant tissue was demonstrated to be an efficient natural matrix for AP infrared laser desorption ionization. In soft fruit tissues from bananas, grapes, and strawberries, potassiated ions of the most abundant metabolites, small carbohydrates, and their clusters produced the strongest peaks in the spectra. Molecular imaging of a strawberry skin sample revealed the distribution of the sucrose, glucose/fructose, and citric acid species around the embedded seeds. Infrared AP MALDI mass spectrometric imaging without the addition of an artificial matrix enables the in vivo investigation of small biomolecules and biological processes (e.g., metabolomics) in their natural environment.  相似文献   

13.
In this paper we introduce laser ablation atmospheric pressure photoionization (LAAPPI), a novel atmospheric pressure ion source for mass spectrometry. In LAAPPI the analytes are ablated from water-rich solid samples or from aqueous solutions with an infrared (IR) laser running at 2.94 μm wavelength. Approximately 12 mm above the sample surface, the ablation plume is intercepted with an orthogonal hot solvent (e.g., toluene or anisole) jet, which is generated by a heated nebulizer microchip and directed toward the mass spectrometer inlet. The ablated analytes are desolvated and ionized in the gas-phase by atmospheric pressure photoionization using a 10 eV vacuum ultraviolet krypton discharge lamp. The effect of operational parameters and spray solvent on the performance of LAAPPI is studied. LAAPPI offers ~300 μm lateral resolution comparable to, e.g., matrix-assisted laser desorption ionization. In addition to polar compounds, LAAPPI efficiently ionizes neutral and nonpolar compounds. The bioanalytical application of the method is demonstrated by the direct LAAPPI analysis of rat brain tissue sections and sour orange (Citrus aurantium) leaves.  相似文献   

14.
The implantation of low-velocity massive gold clusters is shown to be a method of choice for homogeneous incorporation of a metallic matrix into the near-surface region of a solid biopolymer for subsequent laser desorption/ionization (LDI) MS analysis. Matrix implanted (MI)LDI spectra from cluster-implanted pure test peptide or tissue exhibit molecular ion peaks similar to those observed by matrix-assisted LDI. Moreover, the ion emission is very reproducible from any spot on the surface of these test samples. MILDI promises to be a powerful technique for mass spectrometric analysis of native biological samples as demonstrated by the first results on rat brain tissues.  相似文献   

15.
A plasma-based ambient desorption/ionization mass spectrometry (ADI-MS) source was used to perform molecular mass spectral imaging. A small amount of sample material was ablated by focusing 266 nm laser light onto a spot. The resulting aerosol was transferred by a nitrogen stream to the flowing afterglow of a helium atmospheric pressure glow discharge ionization source; the ionized sample material was analyzed by a Leco Unique time-of-flight mass spectrometer. Two-dimensional mass spectral images were generated by scanning the laser beam across a sample surface. The total analysis time for a 6 mm (2) surface, which is limited by the washout of the ablation chamber, was less than 30 min. With this technique, a spatial resolution of approximately 20 microm has been achieved. Additionally, the laser ablation configuration was used to obtain depth information of over 2 mm with a resolution of approximately 40 microm. The combination of laser ablation with the flowing atmospheric pressure afterglow source was used to analyze several sample surfaces for a wide variety of analytes and with high sensitivity (LOD of 5 fmol for caffeine).  相似文献   

16.
Thermal modeling of laser capture microdissection   总被引:1,自引:0,他引:1  
A first-order thermal analysis is applied to Laser Capture Microdissection (LCM), a new microscope technique for routine targeting and extraction of specific cells from tissue sections for subsequent multiplex molecular analysis. In LCM a polymer film placed in contact with the tissue is focally activated by a pulsed IR laser beam and is melted and bonded to adjacent targeted cells. A three-dimensional finite-element model is used to predict the thermal transients within the polymer, the captured tissue, and its macromolecules. The simulations allow a comparison of models for the physical process of LCM with the experimental data on the dependence of the transfer spot size on laser power. The validated physical model and the thermal simulations permit optimization of the complex LCM parameter space for a wide variety of configurations and applications.  相似文献   

17.
Nemes P  Vertes A 《Analytical chemistry》2007,79(21):8098-8106
Mass spectrometric analysis of biomolecules under ambient conditions promises to enable the in vivo investigation of diverse biochemical changes in organisms with high specificity. Here we report on a novel combination of infrared laser ablation with electrospray ionization (LAESI) as an ambient ion source for mass spectrometry. As a result of the interactions between the ablation plume and the spray, LAESI accomplishes electrospray-like ionization. Without any sample preparation or pretreatment, this technique was capable of detecting a variety of molecular classes and size ranges (up to 66 kDa) with a detection limit of 8 and 25 fmol for verapamil and reserpine, respectively, and quantitation capabilities with a four-decade dynamic range. We demonstrated the utility of LAESI in a broad variety of applications ranging from plant biology to clinical analysis. Proteins, lipids, and metabolites were identified, and antihistamine excretion was followed via the direct analysis of bodily fluids (urine, blood, and serum). We also performed in vivo spatial profiling (on leaf, stem, and root) of metabolites in a French marigold (Tagetes patula) seedling.  相似文献   

18.
We have developed a new calibration technique for multielement determination and U-Pb dating of zircon samples using laser ablation-inductively coupled plasma mass spectrometry (ICPMS) coupled with galvanometric optics. With the galvanometric optics, laser ablation of two or more sample materials could be achieved in very short time intervals (~10 ms). The resulting sample aerosols released from different ablation pits or different solid samples were mixed and homogenized within the sample cell and then transported into the ICP ion source. Multiple spot laser ablation enables spiking of analytes or internal standard elements directly into the solid samples, and therefore the standard addition calibration method can be applied for the determination of trace elements in solid samples. In this study, we have measured the rare earth element (REE) abundances of two zircon samples (Nancy 91500 and Pre?ovice) based on the standard addition technique, using a direct spiking of analytes through a multispot laser ablation of the glass standard material (NIST SRM612). The resulting REE abundance data show good agreement with previously reported values within analytical uncertainties achieved in this study (10% for most elements). Our experiments demonstrated that nonspectroscopic interferences on 14 REEs could be significantly reduced by the standard addition technique employed here. Another advantage of galvanometric devices is the accumulation of sample aerosol released from multiple spots. In this study we have measured the U-Pb age of a zircon sample (LMR) using an accumulation of sample aerosols released from 10 separate ablation pits of low diameters (~8 μm). The resulting (238)U-(206)Pb age data for the LMR zircons was 369 ± 64 Ma, which is in good agreement with previously reported age data (367.6 ± 1.5 Ma). (1) The data obtained here clearly demonstrate that the multiple spot laser ablation-ICPMS technique can become a powerful approach for elemental and isotopic ratio measurements in solid materials.  相似文献   

19.
Due to their significance in energy and environmental and natural product research, as well as their large genetic diversity, rapid in situ analysis of cyanobacteria is of increasing interest. Metabolic profiles and the composition of energy harvesting antenna protein complexes are needed to understand how environmental factors affect the functioning of these microorganisms. Here, we show that laser ablation electrospray ionization (LAESI) mass spectrometry enables the direct analysis of phycobilisomal antenna proteins and report on numerous metabolites from intact cyanobacteria. Small populations (n < 616 ± 76) of vegetative Anabaena sp. PCC7120 cyanobacterial cells are analyzed by LAESI mass spectrometry. The spectra reveal the ratio of phycocyanin (C-PC) and allophycocyanin (APC) in the antenna complex, the subunit composition of the phycobiliproteins, and the tentative identity of over 30 metabolites and lipids. Metabolites are tentatively identified by accurate mass measurements, isotope distribution patterns, and literature searches. The rapid simultaneous analysis of abundant proteins and diverse metabolites enables the evaluation of the environmental response and metabolic adaptation of cyanobacteria and other microorganisms.  相似文献   

20.
Laser desorption ionization-mass spectrometric (LDI-MS) analysis of vital biological tissues and native, ex vivo tissue specimens is described. It was found that LDI-MS analysis yields tissue specific data using lasers both in the ultraviolet and far-infrared wavelength regimes, while visible and near IR lasers did not produce informative MS data. LDI mass spectra feature predominantly phospholipid-type molecular ions both in positive and negative ion modes, similar to other desorption ionization methods. Spectra were practically identical to rapid evaporative ionization MS (REIMS) spectra of corresponding tissues, indicating a similar ion formation mechanism. LDI-MS analysis of intact tissues was characterized in detail. The effect of laser fluence on the spectral characteristics (intensity and pattern) was investigated in the case of both continuous wave and pulsed lasers at various wavelengths. Since lasers are utilized in various fields of surgery, a surgical laser system was combined with a mass spectrometer in order to develop an intraoperative tissue identification device. A surgical CO(2) laser was found to yield sufficiently high ion current during normal use. The principal component analysis-based real-time data analysis method was developed for the quasi real-time identification of mass spectra. Performance of the system was demonstrated in the case of various malignant tumors of the gastrointestinal tract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号