首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Chryseomonas luteola TEM 05 cells were entrapped both in alginate and chitosan coated alginate beads. Biosorption of metal ions on alginate beads was investigated by using a batch stirred system at pH 6.0, 25 degrees C, in initial metal concentration of 1.92 mM of Cr6+, 0.89 mM Cd2+ and 1.69 mM Co2+. Then, a process of competitive biosorption of these metal ions was described and compared to single metal ion adsorption in solution. The apparent equilibrium biosorption was reached within the 180 min of contact for all metals. Although the competitive biosorption capacities of the beads for all metal ions were lower than those of single conditions, Cd2+ biosorption on alginate and alginate-chitosan beads did not change significantly.  相似文献   

2.
The present study dealt with the adsorption of eosin Y, as a model anionic dye, from aqueous solution using chitosan nanoparticles prepared by the ionic gelation between chitosan and tripolyphosphate. The nanoparticles were characterized by atomic force microscopy (AFM), size and zeta potential analysis. A batch system was applied to study the adsorption of eosin Y from aqueous solution by chitosan nanoparticles. The results showed that the adsorption of eosin Y on chitosan nanoparticles was affected by contact time, eosin Y concentration, pH and temperature. Experimental data followed Langmuir isotherm model and the adsorption capacity was found to be 3.333 g/g. The adsorption process was endothermic in nature with an enthalpy change (DeltaH) of 16.7 kJ/mol at 20-50 degrees C. The optimum pH value for eosin Y removal was found to be 2-6. The dye was desorbed from the chitosan nanoparticles by increasing the pH of the solution.  相似文献   

3.
Novel pH-sensitive hydrogels based on chitosan, itaconic acid and methacrylic acid were applied as adsorbents for the removal of Zn2+ ions from aqueous solution. In batch tests, the influence of solution pH, contact time, initial metal ion concentration and temperature was examined. The sorption was found pH dependent, pH 5.5 being the optimum value. The adsorption process was well described by the pseudo-second order kinetic. The hydrogels were characterized by spectral (Fourier transform infrared—FTIR) and structural (SEM/EDX and atomic force microscopy—AFM) analyses. The surface topography changes were observed by atomic force microscopy, while the changes in surface composition were detected using phase imaging AFM. The negative values of free energy and enthalpy indicated that the adsorption is spontaneous and exothermic one. The best fitting isotherms were Langmuir and Redlich-Peterson and it was found that both linear and nonlinear methods were appropriate for obtaining the isotherm parameters. However, the increase of temperature leads to higher adsorption capacity, since swelling degree increased with temperature.  相似文献   

4.
Multilayer composite membranes with high removal capability for metal ion were prepared using electrostatic self-assembly (ESA) technique. Especially, self-assembled multilayer of chitosan microspheres and PAA were formed onto charged surface of polyacrylonitrile (PAN) membranes. It was confirmed that the alternate multilayer of chitosan and PAA were deposited on the base membrane surface. The formation of the ESA layer-by-layer of chitosan/PAA or chitosan microspheres/PAA onto the base membrane surface functionally equipped the membrane with removal capability for Cu2+. Especially, membranes with chitosan microspheres/PAA ESA layers on the surface showed relatively higher adsorption capability as compared with membranes with chitosan/PAA ESA layers. Besides, the influence of the pH of metal ion solution on the metal ion adsorption property of ESA modified membrane was investigated. It was proposed that the layer-by-layer self-assembled deposition of chitosan microspheres would be a new approach to functionalize membrane with high adsorption capability for metal ions.  相似文献   

5.
Xu F  Zhang N  Long Y  Si Y  Liu Y  Mi X  Wang X  Xing F  You X  Gao J 《Journal of hazardous materials》2011,188(1-3):148-155
Highly porous chitosan (CS) monoliths were prepared by a unidirectional freeze-drying method and the adsorption performance of the monoliths for metal ions in aqueous solution was evaluated. The porous CS monoliths have excellent adsorption for a range of metal ions. The effect of the amount of porous CS monoliths, the pH, the adsorption time, the amount of the cross-linking agent, and the amount of disodium ethylenediamine tetraacetate (EDTA) on the saturated adsorption efficiency (Ade) were determined. The pH had the greatest influence on the adsorption behavior. Under optimal conditions (C(CU2?) = 800 mg/L, pH 6, and cross-linking agent = 0.15%) for the CS monoliths, the Ade for Cu(2+) exceeded 99%, and the saturated adsorption capacity (Q(s)) reached a value of 141.8 mg/g (2.23 mmol/g) in 4h. Moreover, the addition of EDTA can both increase the Q(s) and shorten the time that achieved the level. If EDTA was added, this level was achieved in 2h. The porous CS monoliths can be regenerated by soaking them in acid and their Ade is maintained.  相似文献   

6.
Du WL  Xu YL  Xu ZR  Fan CL 《Nanotechnology》2008,19(8):085707
The present study was conducted to prepare and characterize chitosan nanoparticle loaded copper ions, and evaluate their antibacterial activity. Chitosan nanoparticles were prepared based on ionotropic gelation, and then the copper ions were loaded. The particle size, zeta potential and morphology were determined. Antibacterial activity was evaluated against E.?coli?K(88) by determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) in vitro. Results showed that the antibacterial activity was significantly enhanced by the loading of copper ions compared to those of chitosan nanoparticles and copper ions. The MIC and MBC of chitosan nanoparticle loaded copper ions were 21 times and 42 times lower than those of copper ions, respectively. To confirm the antibacterial mechanism, morphological changes of E.?coli?K(88) treated by chitosan nanoparticle loaded copper ions were dynamically observed with an atomic force microscope (AFM). It was found that chitosan nanoparticle loaded copper ions killed E.?coli?K(88) through damage to the cell membrane.  相似文献   

7.
The stability of polyelectrolyte multilayer assemblies was investigated with emphasis on the effects of solution ionic strength, pH, and polymer molecular weight on the film thickness and surface topography. The multilayers consisting of two polysaccharides, the polyanion sodium hyaluronate (HA) and the polycation chitosan (CH) were studied using surface plasmon resonance (SPR) spectroscopy, impedance quartz crystal microbalance (QCM), and atomic force microscopy (AFM). SPR/QCM experiments show that coatings consisting of four HA/CH bilayers assembled at pH 4.5 in the presence of 0.15 M NaCl are stable in NaCl solutions of concentration less than 0.8 M. These multilayers are stable when placed in contact with aqueous solutions ranging in pH from 3.5 to 9. The molecular weight of the polysaccharides has only a marginal effect on the stability of the films in the range explored here (HA: Mn = 360,000 or 31,000 g/mol; CH: Mn = 160,000 or 30,000 g/mol). AFM imaging reveals that different mechanisms may account for the multilayers stability versus salt and pH treatments. While increasing the ionic strength induces reorganization of the surface topography from isolated spherical islets to elongated worm-like features, changes in pH have no appreciable effects on the coating topography prior to complete disintegration.  相似文献   

8.
Inspired by organic matrices in some life systems which can operate as templates for biosynthesis organic materials with uniform size and morphology, in our experiment, chitosan was combined with AG4 peptide (NPSSLFRYLPSD) to form a simple organic matrix, which was used as a template to synthesize particle size and morphology-controlling silver nanoparticles. The results of UV–vis determination and TEM observation indicated that uniform spherical silver nanoparticles with about 5 nm in size were obtained at the certain concentration of chitosan and silver ions. Hence, it is possible to control the size and morphology of silver nanoparticles at a certain extent by adjusting the concentration of chitosan and silver ions. In addition, triangle and hexagonal silver nanoparticles ranging from 20 nm to 60 nm in size appeared in different conditions. The advantage of this biomimetic synthesis of silver nanoparticles is that the process could be accomplished under mild conditions rather than stringent conditions, such as high temperature, very high pressures and a toxic environment, which usually occurs with the traditional methods for preparing metal nanoparticles.  相似文献   

9.
Alginate nanoparticles were prepared from dilute alginate sol by inducing a pre-gel with calcium counter ions, followed by polyelectrolyte complex coating with chitosan. Particles in the nanometer size range were obtained with 0.05% alginate and 0.9 mM Ca2+. The mean particle size was influenced by time and stirring speed of nanoparticle preparation, by alginate guluronic acid content and chitosan molecular weight and by the initial alginate:chitosan mass ratio. The association efficiency of insulin into alginate nanoparticles, as well as loading capacity were mainly influenced by the alginate:chitosan mass ratio. Under optimized size conditions, the association efficiency and loading capacities were as high as 92% and 14.3%, respectively. Approximately 50% of the protein was partially retained by the nanoparticles in gastric pH environment up to 24 hours while a more extensive release close to 75% was observed under intestinal pH conditions. Mild formulation conditions, optimum particle size range obtained, high insulin entrapment efficiency, and resistance to gastrointestinal release seem to be synergic and promising factors toward development of an oral insulin delivery form.  相似文献   

10.
Adsorption of chromium from aqueous solutions by maple sawdust   总被引:26,自引:0,他引:26  
This paper presents the data for the effect of adsorbent dose, initial sorbate concentration, contact time, and pH on the adsorption of chromium(VI) on maple sawdust. Batch adsorption studies have been carried out. An empirical relationship has been obtained to predict the percentage chromium(VI) removal at any time for known values of sorbent and initial sorbate concentration. Under observed test conditions, the equilibrium adsorption data fits the linear Langmuir and Freundlich isotherms. The experimental result inferred that chelation ion exchange is one of the major adsorption mechanisms for binding metal ions to the maple sawdust.  相似文献   

11.
Removal of chromium ions from aqueous solutions by using natural and crosslinked chitosan membranes was achieved using batch adsorption experiments. The effect of pH (6.0 and 2.0), concentration of chromium ions and crosslinking agents (glutaraldehyde: GLA and epichlorohydrin: ECH) on the adsorption properties of chitosan membranes was analyzed. The experimental equilibrium data was fitted to Langmuir and Freundlich models. Through the model curves, it was possible to observe that the amount of chromium ions adsorbed was significantly higher for crosslinked membranes compared to non-crosslinked chitosan. The maximum adsorbed amount was about 1400 mg g(-1) for ECH-crosslinked chitosan at pH 6.0. The adsorption rates for crosslinked chitosan membranes with glutaraldehyde and epichlorohydrin were similar for natural chitosan. Desorption study using NaCl (1 mol L(-1)) solution was performed on chitosan membranes, in order to recover chromium ions and to determine the suitable number of cycles for repeated use of these membranes without considerable decrease in their adsorption capacity. The desorption results showed that chromium ions could be more effectively removed at pH 2.0 than pH 6.0, mainly for ECH-crosslinked chitosan.  相似文献   

12.
The rates of oxidative degradation of a new antibacterial drug, RWJ416457, in aqueous solutions were investigated over the pH-range of 2 to 10. Two oxidative degradates were identified and the influences of pH, buffer concentration, metal ions, metal chelating agents, and temperatures were studied. The pH, metal chelating agents, and metal ions significantly changed the product distribution in addition to the degradation rate. Oxidative degradation is believed to follow a hydrogen abstraction (HAT) pathway. One degradate was the major product under acidic conditions and its predominance is attributed to a resonance-stabilized intermediate. The importance of the resonance structure was diminished under neutral and basic conditions. The product distribution changed and two degradates were formed in equal amounts. The study results guided the formulation development to minimize oxidation.  相似文献   

13.
The rates of oxidative degradation of a new antibacterial drug, RWJ416457, in aqueous solutions were investigated over the pH-range of 2 to 10. Two oxidative degradates were identified and the influences of pH, buffer concentration, metal ions, metal chelating agents, and temperatures were studied. The pH, metal chelating agents, and metal ions significantly changed the product distribution in addition to the degradation rate. Oxidative degradation is believed to follow a hydrogen abstraction (HAT) pathway. One degradate was the major product under acidic conditions and its predominance is attributed to a resonance-stabilized intermediate. The importance of the resonance structure was diminished under neutral and basic conditions. The product distribution changed and two degradates were formed in equal amounts. The study results guided the formulation development to minimize oxidation.  相似文献   

14.
基于QCM-D的天然多糖材料的蛋白吸附研究   总被引:2,自引:0,他引:2  
采用QCM-D和AFM等技术研究比较了海藻酸钙和壳聚糖两种天然多糖材料经旋转成膜后的表面形貌、亲疏水性、水合过程及蛋白吸附和解吸行为.结果发现,海藻酸钙相比壳聚糖具有更好的亲水性,在生理环境中的水合过程达到平衡较快,且水合程度较高,这也影响材料的蛋白吸附性能.白蛋白吸附和洗脱实验表明,水舍程度较高的海藻酸钙初始吸附蛋白量较少,但海藻酸钙吸附的蛋白量在PBS洗脱后反而较大.而蛋白层|△D/△F|值在洗脱后减小,表明残留的蛋白层发生一定程度的构象变化,结构相对致密,其粘弹性变小.用3种动力学模型拟合蛋白吸附动力学过程发现Langmuir模型拟合度较高,且壳聚糖薄膜的蛋白吸附过程比海藻酸钙具有更小的速率常数k,达到吸附平衡较缓慢.  相似文献   

15.
Diffuse reflectance infrared Fourier transform spectroscopy was used to investigate the structural nature of polyacrylates adsorbed on alumina from aqueous solution. The presence of sodium bicarbonate or sodium ions on the alumina surface could inhibit the carboxylate groups on the polymer chains from forming covalent bonds with aluminium ions on the surface. More carboxylate groups of the chains were adsorbed on surface sites at lower polymer concentration and higher pH. Also, an increased loop formation of the polyacrylate chains occurred with a decrease in treatment of pH and an increase in polymer concentration. When the pH changed from higher to lower values in steps, the adsorbed polymer did not increase as much from the stretched-out form to the coiled form as was noted if one initially only treated the aqueous polyacrylate/alumina slurry at the lower pH. The adsorption of water on the polyacrylate-treated surface changed the ratio between covalently and ionically bonded carboxylate groups, causing more ionically bonded species.  相似文献   

16.
Magnetic chitosan microspheres were prepared and chemically modified with thiourea (TMCS) for adsorption of metal ions. TMCS obtained were investigated by means of X-ray diffraction (XRD), IR, magnetic properties and thermogravimetric analysis (TGA). The adsorption properties of TMCS toward Hg(2+), Cu(2+), and Ni(2+) ions were evaluated. Various factors affecting the uptake behavior such as contact time, temperature, pH and initial concentration of the metal ions were investigated. The kinetics was evaluated utilizing the pseudo-first-order, pseudo-second-order, and the intra-particle diffusion models. The equilibrium data were analyzed using the Langmuir, Freundlich, and Tempkin isotherm models. The adsorption kinetics followed the mechanism of the pseudo-second-order equation for all systems studied, evidencing chemical sorption as the rate-limiting step of adsorption mechanism and not involving a mass transfer in solution. The best interpretation for the equilibrium data was given by Langmuir isotherm, and the maximum adsorption capacities were 625.2, 66.7, and 15.3mg/g for Hg(2+), Cu(2+), and Ni(2+) ions, respectively. TMCS displayed higher adsorption capacity for Hg(2+) in all pH ranges studied. The adsorption capacity of the metal ions decreased with increasing temperature. The metal ion-loaded TMCS with were regenerated with an efficiency of greater than 88% using 0.01-0.1M ethylendiamine tetraacetic acid (EDTA).  相似文献   

17.
酮戊二酸改性壳聚糖微球的制备及吸附性能   总被引:1,自引:0,他引:1  
采用反相悬浮法制备交联壳聚糖微球,再与α-酮戊二酸反应生成Schiff碱,NaBH4还原制得改性壳聚糖微球。用FT-IR、SEM和XRD进行表征,并用于吸附2,4-二硝基酚研究。考察了吸附时间、溶液pH值、2,4-二硝基酚浓度、温度、NaCl含量等因素对吸附的影响。结果表明,α-酮戊二酸改性交联壳聚糖微球对2,4-二硝基酚有较好的吸附性能,在pH为3.6时,30 min吸附量达372.2 mg/g,吸附数据符合Freundlich等温方程。  相似文献   

18.
The crosslinked chitosans synthesized by the homogeneous reaction of chitosan in aqueous acetic acid solution with epichlorohydrin were used to investigate the adsorptions of three metals of Cu(II), Zn(II), and Pb(II) ions in an aqueous solution. The crosslinked chitosan characterized by 13CNMR, SEM, and elemental analysis, and the effects of pH and anion on the adsorption capacity were carried out. The dynamical study demonstrated that the adsorption process was followed the second-order kinetic equation. The results obtained from the equilibrium isotherms adsorption studies of three metals of Cu(II), Zn(II), and Pb(II) ions by being analyzed in three adsorption models, namely, Langmuir, Freundlich, and Dubinnin-Radushkevich isotherm equations, indicated to be well fitted to the Langmuir isotherm equation under the concentration range studied, by comparing the linear correlation coefficients. The order of the adsorption capacity (Qm) for three metal ions was as follows: Cu2+>Pb2+>Zn2+. This technique for syntheses of the crosslinked chitosans with epichlorohydrin via the homogeneous reaction in aqueous acetic acid solution showed that the adsorptions of three metal ions in aqueous solution were followed the monolayer coverage of the adsorbents through physical adsorption phenomena.  相似文献   

19.
Quartz crystal microbalance (QCM) is known as a very sensitive device used for determination of mass quantity adsorbed on sensor surface. Its detection limits are in the range of ng cm\(^{-2}\). The adsorption mechanism of metallic nanoparticles on QCM sensor was investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). This study aims to highlight the importance of QCM applications in nanoparticles deposition field. The layers formed through adsorption process, induced by the oscillations of the QCM sensor, were investigated by AFM for surface topography and for particle mean size values. The morphology of layers and nanoparticles dimensions were determined by SEM. For a more complex investigation of the nanoparticles adsorption mechanism, the chemical composition of layers was achieved using SEM coupled with energy dispersive X-ray spectrometer (SEM-EDS). This preliminary research involved a new approach in characterization of metallic nanoparticles layers to achieve functional assembled monolayers.  相似文献   

20.
A simple and effective process has been proposed to prepare chitosan/magnetite nanocomposite beads with saturation magnetization value as high as uncoated Fe3O4 nanoparticles (ca. 54 emu/g). The reason was that the coating chitosan layer was so thin that it did not affect magnetic properties of these composite beads. Especially, chitosan on the surface of the magnetic Fe3O4 nanoparticles is available for coordinating with heavy metal ions, making those ions removed with the assistance of external magnets. Maximum adsorption capacities for Pb(II) and Ni(II), occurred at pH 6 and under room temperature were as high as 63.33 and 52.55 mg/g respectively, according to Langmuir isotherm model. These results permitted to conclude that chitosan/magnetite nanocomposite beads could serve as a promising adsorbent not only for Pb(II) and Ni(II) (pH = 4–6) but also for other heavy metal ions in wastewater treatment technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号