首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The high-temperature flexural strength of hot-pressed silicon nitride (Si3N4) and Si3N4-whisker-reinforced Si3N4-matrix composites has been measured at a crosshead speed of 1.27 mm/min and temperatures up to 1400°C in a nitrogen atmosphere. Load–displacement curves for whisker-reinforced composites showed nonelastic fracture behavior at 1400°C. In contrast, such behavior was not observed for monolithic Si3N4. Microstructures of both materials have been examined by scanning and transmission electron microscopy. The results indicate that grain-boundary sliding could be responsible for strength degradation in both monolithic Si3N4 and its whisker composites. The origin of the nonelastic failure behavior of Si3N4-whisker composite at 1400°C was not positively identified but several possibilities are discussed.  相似文献   

2.
Si3N4/carbon fiber composites have been produced with and without seeding by an extrusion and sintering process. In both cases the carbon fibers were aligned along the direction of extrusion, but the Si3N4 grains were only aligned in the seeded material. The mechanical properties of the specimens showed anisotropy with respect to the grain alignment, with both strength and toughness being highest in the direction parallel to the extruding direction. In this direction the seeded specimen, where both the Si3N4 grains and the carbon fibers were aligned, showed both higher fracture toughness and higher fracture strength than the nonseeded specimen where only the fibers were aligned.  相似文献   

3.
A new method for preparing high bending strength porous silicon nitride (Si3N4) ceramics with controlled porosity has been developed by using pressureless sintering techniques and phosphoric acid (H3PO4) as the pore-forming agent. The fabrication process is described in detail and the sintering mechanism of porous ceramics is analyzed by the X-ray diffraction method and thermal analysis. The microstructure and mechanical properties of the porous Si3N4 ceramics are investigated, as a function of the content of H3PO4. The resultant high porous Si3N4 ceramics sintered at 1000°–1200°C show a fine porous structure and a relative high bending strength. The porous structure is caused mainly by the volatilization of the H3PO4 and by the continous reaction of SiP2O7 binder, which could bond on to the Si3N4 grains. Porous Si3N4 ceramics with a porosity of 42%–63%, the bending strength of 50–120 MPa are obtained.  相似文献   

4.
Composites containing 30 vol%β-Si3N4 whiskers in a Si3N4 matrix were fabricated by hot-pressing. The composites exhibited fracture toughness values between 7.6 and 8.6 MPa · m1/2, compared to 4.0 MPa · m1/2 for unreinforced polycrystalline Si3N4. The improvements in fracture toughness were attributed to crack wake effects, i.e., whisker bridging and pullout mechanisms.  相似文献   

5.
Dense, ZrO2-dispersed Si3N4 composites without additives were fabricated at 180 MPa and ∼1850° to 1900°C for l h by hot isostatic pressing using a glass-encapsulation method; the densities reached >96% of theoretical. The dispersion of 20 wt% of 2.5YZrO2 (2.5 mol% Y2O3) in Si3N4 was advantageous to increase the room-temperature fracture toughness (∼7.5 MPa˙m1/2) without degradation of hardness (∼15 GPa) because of the high retention of tetragonal ZrO2. The dependence of fracture toughness of Si3N4–2.5YZrO2 on ZrO2 content can be related to the formation of zirconium oxynitride because of the reaction between ZrO2 and Si3N4 matrix in hot isostatic pressing.  相似文献   

6.
The in situ β-Si3N4/α'-SiAlON composite was studied along the Si3N4–Y2O3: 9 AlN composition line. This two phase composite was fully densified at 1780°C by hot pressing Densification curves and phase developments of the β-Si3N4/α'-SiAlON composite were found to vary with composition. Because of the cooperative formation of α'-Si AlON and β-Si3N4 during its phase development, this composite had equiaxed α'-SiAlON (∼0.2 μm) and elongated β-Si3N4 fine grains. The optimum mechanical properties of this two-phase composite were in the sample with 30–40%α', which had a flexural strength of 1100 MPa at 25°C 800 MPa at 1400°C in air, and a fracture toughness 6 Mpa·m1/2. α'-SiAlON grains were equiaxed under a sintering condition at 1780°C or lower temperatures. Morphologies of the α°-SiAlON grains were affected by the sintering conditions.  相似文献   

7.
Polycrystalline Si3N4 samples with different grain-size distributions and a nearly constant volume content of grain-boundary phase (6.3 vol%) were fabricated by hot-pressing at 1800°C and subsequent HIP sintering at 2400°C. The HIP treatment of hot-pressed Si3N4 resulted in the formation of a large amount of ß-Si3N4 grains ∼10 µm in diameter and ∼50 µm long, and the elimination of smaller matrix grains. The room-temperature thermal conductivities of the HIPed Si3N4 materials were 80 and 102 Wm−1K−1, respectively, in the directions parallel and perpendicular to the hot-pressing axis. These values are slightly higher than those obtained for hot-pressed samples (78 and 93 Wm−1K−1). The calculated phonon mean free path of sintered Si3N4 was ∼20 nm at room temperature, which is very small as compared to the grain size. Experimental observations and theoretical calculations showed that the thermal conductivity of Si3N4 at room temperature is independent of grain size, but is controlled by the internal defect structure of the grains such as point defects and dislocations.  相似文献   

8.
Detailed microstructural analysis of a 10 mol% Y2O3 fluxed hot-pressed silicon nitride reveals that, in addition to the yttrium-silicon oxynitride phase located at the multiple Si3N4 grain junctions, there is a thin boundary phase 10 to 80 Å wide separating the silicon nitride and the oxynitride grains. Also, X-ray microanalysis from regions as small as 200 Å across demonstrates that the yttrium-silicon oxynitride, Y2Si(Si2O3N4), phase can accommodate appreciable quantities of Ti, W, Fe, Ni, Co, Ca, Mg, Al, and Zn in solid solution. This finding, together with observations of highly prismatic Si3N4 grains enveloped by Y2Si(Si2O3N4), suggests that densification occurred by a liquid-phase "solution-reprecipitation" process.  相似文献   

9.
Phase relationships in the Si3N4–SiO2–Lu2O3 system were investigated at 1850°C in 1 MPa N2. Only J-phase, Lu4Si2O7N2 (monoclinic, space group P 21/ c , a = 0.74235(8) nm, b = 1.02649(10) nm, c = 1.06595(12) nm, and β= 109.793(6)°) exists as a lutetium silicon oxynitride phase in the Si3N4–SiO2–Lu2O3 system. The Si3N4/Lu2O3 ratio is 1, corresponding to the M-phase composition, resulted in a mixture of Lu–J-phase, β-Si3N4, and a new phase of Lu3Si5ON9, having orthorhombic symmetry, space group Pbcm (No. 57), with a = 0.49361(5) nm, b = 1.60622(16) nm, and c = 1.05143(11) nm. The new phase is best represented in the new Si3N4–LuN–Lu2O3 system. The phase diagram suggests that Lu4Si2O7N2 is an excellent grain-boundary phase of silicon nitride ceramics for high-temperature applications.  相似文献   

10.
The existence of compounds between Si3N4-CeO2 and Si3N4-Ce2O3 was investigated for firing temperatures of 1600° to 1700°C. The two new monoclinic compounds found were Ce2O3·2Si3N4 with lattice parameters a = 16.288, b = 4.848, and c =7.853 Å and β=91.54° and Ce4Si2O7N2 with lattice parameters a = 10.360, b = 10.865, and c =3.974 Å and β=90.33°. Cerium orthosilicate (Ce 4.67 (SiO4)3O) is present during firing as a glassy intermediate phase which promotes sintering and densification and then reacts with silicon nitride to form cerium silicon oxynitrde (CeSiO2N).  相似文献   

11.
R -curve behavior of Si3N4–BN composites and monolithic Si3N4 for comparison was investigated. Si3N4–BN composites showed a slowly rising R -curve behavior in contrast with a steep R -curve of monolithic Si3N4. BN platelets in the composites seem to decrease the crack bridging effects of rod-shaped Si3N4 grains for small cracks, but enhanced the toughness for long cracks as they increased the crack bridging scale. Therefore, fracture toughness of the composites was relatively low for the small cracks, but it increased significantly to ∼8 MPa·m1/2 when the crack grew longer than 700 μm, becoming even higher than that of the monolithic Si3N4.  相似文献   

12.
This paper deals with the densification and phase transformation during pressureless sintering of Si3N4 with LiYO2 as the sintering additive. The dilatometric shrinkage data show that the first Li2O- rich liquid forms as low as 1250°C, resulting in a significant reduction of sintering temperature. On sintering at 1500°C the bulk density increases to more than 90% of the theoretical density with only minor phase transformation from α-Si3N4 to β-Si3N4 taking place. At 1600°C the secondary phase has been completely converted into a glassy phase and total conversion of α-Si3N4 to β-Si3N4 takes place. The grain growth is anisotropic, leading to a microstructure which has potential for enhanced fracture toughness. Li2O evaporates during sintering. Thus, the liquid phase is transient and the final material might have promising mechanical properties as well as promising high-temperature properties despite the low sintering temperature. The results show that the Li2O−Y2O3 system can provide very effective low-temperature sintering additives for silicon nitride.  相似文献   

13.
The results of two-step oxidation experiments on chemically-vapor-deposited Si3N4 and SiC at 1350°C show that a correlation exists between the presence of a Si2N2O interphase and the strong oxidation resistance of Si3N4. During normal oxidation, k p for SiC was 15 times higher than that for Si3N4, and the oxide scale on Si3N4 was found by SEM and TEM to contain a prominent Si2N2O inner layer. However, when oxidized samples are annealed in Ar for 1.5 h at 1500°C and reoxidized at 1350°C as before, three things happen: the oxidation k p increases over 55-fold for Si3N4, and 3.5-fold for SiC; the Si3N4 and SiC oxidize with nearly equal k p's; and, most significant, the oxide scale on Si3N4 is found to be lacking an inner Si2N2O layer. The implications of this correlation for the competing models of Si3N4 oxidation are discussed.  相似文献   

14.
Silicon oxynitride ceramics were reaction sintered and fully densified by hot isostatic pressing in the temperature range 1700°C to 1950°C from an equimolar mixture of silicon nitride and silica powders without additives. Conversion to Si2N2O increases steeply from a level around 5% of the crystalline phases at 1700°C to 80% at 1800°C, and increases a few percent further at higher temperatures. α -Si3N4 is the major residual crystalline phase below 1900°C. The hardness level for materials containing 85% Si2N2O is approximately 19 GPa, comparable with the hardness of Si3N4 hot isostatically pressed with 2.5 wt% Y2O3, while the fracture toughness level is around 3.1 MPa. m1/2, being approximately 0.8 MPa.m1/2 lower. The three-point bending strength increased with HIP temperature from approximately 300 to 500 MPa.  相似文献   

15.
α/β-Si3N4 composites with various α/β phase ratios were prepared by hot pressing at 1600°–1650°C with MgSiN2 as sintering additives. An excellent combination of mechanical properties (Vickers indentation hardness of 23.1 GPa, fracture strength of about 1000MPa, and toughness of 6.3 MPa·m1/2) could be obtained. Compared with conventional Si3N4-based ceramics, this new material has obvious advantages. It is as hard as typical in-situ-reinforced α-Sialon, but much stronger than the latter (700 MPa). It has comparable fracture strength and toughness, but is much harder than β-Si3N4 ceramics (16 GPa). The microstructures and mechanical properties can be tailored by choosing the additive and controlling the heating schedule.  相似文献   

16.
The effect of aluminum and yttrium nitrate additives on the densification of monolithic Si3N4 and a Si3N4/SiC composite by pressureless sintering was compared with that of oxide additives. The surfaces of Si3N4 particles milled with aluminum and yttrium nitrates, which were added as methanol solutions, were coated with a different layer containing Al and Y from that of Si3N4 particles milled with oxide additives. Monolithic Si3N4 could be sintered to 94% of theoretical density (TD) at 1500°C with nitrate additives. The sintering temperature was about 100°C lower than the case with oxide additives. After pressureless sintering at 1750°C for 2 h in N2, the bulk density of a Si3N4/20 wt% SiC composite reached 95% TD with nitrate additives.  相似文献   

17.
Subsolidus phase relations were established in the system Si3N4-SiO2-Y2O3. Four ternary compounds were confirmed, with compositions of Y4Si2O7N2, Y2Si3O3N4, YSiO2N, and Y10(SiO4)6N2. The eutectic in the triangle Si3N4-Y2Si2O7-Y10(SiO4)6N2 melts at 1500°C and that in the triangle Si2N2O-SiO2-Y2Si2O7 at 1550°C. The eutectic temperature of the Si3N4-Y2Si2O7 join was ∼ 1520°C.  相似文献   

18.
The effect of Si3N4, Ta5Si3, and TaSi2 additions on the oxidation behavior of ZrB2 was characterized at 1200°–1500°C and compared with both ZrB2 and ZrB2/SiC. Significantly improved oxidation resistance of all Si-containing compositions relative to ZrB2 was a result of the formation of a protective layer of borosilicate glass during exposure to the oxidizing environment. Oxidation resistance of the Si3N4-modified ceramics increased with increasing Si3N4 content and was further improved by the addition of Cr and Ta diborides. Chromium and tantalum oxides induced phase separation in the borosilicate glass, which lead to an increase in liquidus temperature and viscosity and to a decrease in oxygen diffusivity and of boria evaporation from the glass. All tantalum silicide-containing compositions demonstrated phase separation in the borosilicate glass and higher oxidation resistance than pure ZrB2, with the effect increasing with temperature. The most oxidation-resistant ceramics contained 15 vol% Ta5Si3, 30 vol% TaSi2, 35 vol% Si3N4, or 20 vol% Si3N4 with 10 mol% CrB2. These materials exceeded the oxidation resistance of the ZrB2/SiC ceramics below 1300°–1400°C. However, the ZrB2/SiC ceramics showed slightly superior oxidation resistance at 1500°C.  相似文献   

19.
[(Trimethylsilyl)amino]titanium trichloride, (CH3)3-SiNHTiClj, was isolated as a red-orange crystalline solid in 58% yield from the reaction of TiCl4 with [(CH3)3Si]2NH in 1:1 molar ratio in dichloromethane at —78°C. Pyrolysis of (CH3)3SiNHTiCl3 at 600°C furnished titanium nitride. This precursor is suitable for the preparation of composites and was employed to prepare Si3N4-TiN and Ti-TiN powders by adding Si3N4 particles or titanium powders to a solution of (CH3), SiNHTiCl3 in dichloromethane, drying and pyrolyzing the resulting solid. This precursor also has been used as a binder to prepare Si3N4-TiN and Ti-TiN bodies. High-resolution transmission electron microscopic studies of the Si3N4-TiN composite showed that titanium nitride is concentrated on the surface of the Si3N4 particles.  相似文献   

20.
The mechanical behavior of MoSi2 reinforced–Si3N4 matrix composites was investigated as a function of MoSi2 phase content, MoSi2 phase size, and amount of MgO densification aid for the Si3N4 phase. Coarse-phase MoSi2-Si3N4 composites exhibited higher room-temperature fracture toughness than fine-phase composites, reaching values >8 MP·am1/2. Composite fracture toughness levels increased at elevated temperature. Fine-phase composites were stronger and more creep resistant than coarse phase composites. Room-temperature strengths >1000 MPa and impression creep rates of ∼10−8 s−1 at 1200°C were observed. Increased MgO levels generally were deleterious to MoSi2-Si3N4 mechanical properties. Internal stresses due to MoSi2 and Si3N4 thermal expansion coefficient mismatch appeared to contribute to fracture toughening in MoSi2-Si3N4 composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号