首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An investigation of system upgradability of installed fiber-optic cable was conducted using 40-Gb/s wavelength-division-multiplexing (WDM) signals toward multiterabit optical networks. A field trial of 63-channel 40-Gb/s dispersion-managed soliton WDM signal transmission was successfully demonstrated over 320-km (4 /spl times/ 80-km) installed nonzero-dispersion-shifted fibers. The average Q factor of 15.4 dB was obtained, and very stable long-term bit-error-ratio performance was confirmed without polarization-mode dispersion compensation. This system upgradability investigation in the field environment provided the confidence to introduce 40-Gb/s technologies and effectively to construct multiterabit optical networks following the demand increase in the future.  相似文献   

2.
A gain-flattened Er/sup 3+/-doped silica-based fiber amplifier (EDFA) has been constructed for a 1.58-/spl mu/m band WDM signal. This EDFA exhibits uniform amplification characteristics with a gain excursion of 0.9 dB for a four-channel WDM signal in the 1.57-1.60 /spl mu/m wavelength region. The average signal gain and the noise figure for the WDM signal are 29.5 dB and less than 6.3 dB, respectively. The use of this EDFA in parallel with a 1.55-/spl mu/m band EDFA will expand the WDM transmission wavelength region.  相似文献   

3.
Strain distributions along optical fibers in a 1.3-km-long cable before and after installation are measured using Brillouin optical-fiber time domain analysis. The residual strains in the installed optical fibers were found to vary from zero to 0.07%, depending on the conduit configuration and installation procedure. Strain distribution measurements were carried out on a 24-fiber slotted-core type single-mode optical fiber cable for 1.55-μm-wavelength transmission, whose length, outer diameter, and weight were 1.3 km, 14 mm, and 0.18 kg/m, respectively. No clear relation between strain distributions and the fiber configuration in the test cable are found  相似文献   

4.
A novel ultracompact 2/spl times/2 wavelength division multiplexer (WDM) for 1.55-/spl mu/m operation based on highly dispersive two-mode interference (TMI) was designed, theoretically modeled, and verified using a finite-difference-time-domain (FDTD) method. A two-moded waveguide assisted with a dispersive tooth-shaped grating provided a mode-dependent reflection band of central wavelength at 1.55 /spl mu/m. The wavelengths of 1538 and 1572 nm that were at the band edges and had the lowest reflection losses and relatively high dispersion were selected for wavelength multiplexing. The result showed that the wavelengths were separated by grating dispersion in a coupler length of 75 /spl mu/m which was much shorter than the required length of 1.1 mm in a regular TMI multiplexer of no grating. Insertion loss of about 1.7 dB and channel contrast of about 12 dB were achieved.  相似文献   

5.
It is experimentally shown that both two- and three-photon absorption in a high-molar-concentration chromophore system can be more efficiently utilized to accomplish optical power limiting and stabilization at laser wavelengths of 1.064 and /spl sim/1.3 /spl mu/m, respectively. The nonlinear absorbing medium is a novel liquid dye system, trans-4-[4-(dihexylamino)styryl]-N-(2-{2-[2-(2-hydroxy-ethoxy) -ethoxy]-ethoxy}ethyl)-pyridini um p-tosylate (abbreviated as ASEPT), consisting of chromophore molecules capable of multiphoton absorption in the near IR range. The nonlinear transmission property and output/input characteristics have been studied based on this liquid dye system, using nanoseconds 1.064-/spl mu/m laser pulses for two-photon excitation and /spl sim/1.3-/spl mu/m subpicoseconds laser pulses for three-photon excitation. A fairly good optical stabilization capability of this new material has been demonstrated at both laser wavelengths. The relative intensity fluctuation of the laser pulses can be remarkably reduced by simply passing through this multiphoton absorbing medium.  相似文献   

6.
The present state of the art and expected development in discrete components for Fiber-optic transmission systems are reviewed. Predicted performance of fiber systems in the 0.85, 1.06, and 1.27 /spl mu/m regions is presented, and the advantages of longer wavelength operation quantified. Itisconcluded that operation near 1.27 /spl mu/m is particularly attractive for a) moderate data rate systems employing LED's and multimode fibers whose chromatic dispersion and attenuation are greatly reduced compared with 0.85 and 1.06 /spl mu/m, and b) high data rate systems employing lasers and monomode fibers. In systems employing lasers and graded index multimode fibers, the advantage of 1.27/spl mu/m versus 1.06 /spl mu/m operation is not as pronounced, although transmission distances at both of these longer wavelengths are significantly increased from those at 0.85 /spl mu/m.  相似文献   

7.
This paper describes in detail the amplification characteristics of gain-shifted thulium-doped fiber amplifiers (GS-TDFAs) operating in the 1480to 1510-nm wavelength region (1.49-/spl mu/m S-band) for use in wavelength-division-multiplexing (WDM) systems. Gain shifting of a TDFA, which normally has a gain band at 1.47 /spl mu/m (S/sup +/-band), is achieved by two types of dual-wavelength pumping: (1) 1.05 and 1.56 /spl mu/m or (2) 1.4 and 1.56 /spl mu/m. The main pump source at 1.05 or 1.4 /spl mu/m creates population inversion between /sup 3/F/sub 4/ (upper laser level) and /sup 3/H/sub 4/ (lower laser level), while the auxiliary pump source at 1.56 /spl mu/m reduces the average fractional inversion down to approximately 0.4, which is a desired level for gain shifting. We show experimentally that the former provides a low internal noise figure (<4 dB) due to high fractional inversion at the input end of a thulium fiber, while the latter provides a very high optical efficiency but a higher internal noise figure (/spl sim/5 dB) due to the lower fractional inversion at the input end. These characteristics were verified by numerical simulation based on a comprehensive rate equation modeling. We demonstrated a 1.4- and 1.56-/spl mu/m laser-diode-pumped GS-TDFA with an optical efficiency of 29.3% and high output power of +21.5 dBm. Gain flatness and tilt control were also investigated. These results strongly confirm the feasibility of using GS-TDFAs in practical ultralarge-capacity WDM networks.  相似文献   

8.
The influence of scattering and two-photon absorption on the optical loss in GaAs-Al/sub 2/O/sub 3/ semiconductor nonlinear waveguides has been studied using femtosecond pulses. By deploying a scattering technique, loss coefficients were evaluated over an extended wavelength range of 1.3-2.1 /spl mu/m in the near-infrared. A systematic study involving intensity and wavelength dependence of the loss revealed the presence of two-photon absorption for wavelengths below 1.6 /spl mu/m. A simple nonlinear transmission study enabled the separation of the two-photon absorption coefficient from scattering and linear absorption. The calculated two-photon absorption coefficients were /spl sim/9-20 cm/GW.  相似文献   

9.
In this letter, the authors demonstrate a wavelength flexible platform for the production of long-wavelength vertical-cavity surface-emitting lasers which provide full wavelength coverage from 1.3-1.6 /spl mu/m. All-epitaxial InP-based devices with AsSb-based distributed Bragg reflectors were achieved through a common design, process, and growth technology at both the important telecommunications wavelengths of 1.3 and 1.5 /spl mu/m. Thin selectively etched tunnel junctions were implemented as low-loss apertures and offer scalability to small device dimensions. Devices showed low threshold currents (<2 mA), near single-mode (SMSR>20 dB) operation, and high differential efficiency (>40% at 1.3 /spl mu/m and >25% at 1.5 /spl mu/m).  相似文献   

10.
Link processing with individual laser pulses has become an industry standard process in IC memory chip manufacturing. It is gaining wide acceptance in analog chip reprogramming and tuning as well. Traditional laser processing, using the standard output of Nd:YAG at 1.064-/spl mu/m and Nd:YLF at 1.047-/spl mu/m laser wavelengths, works well for polysilicon links but is not satisfactory for metal links. This paper describes the physics modeling and computer simulation of the laser link process and a new technique of using 1.3-/spl mu/m laser wavelength for the process. While light absorption of link materials at 1.064-, 1.047-, and 1.3-/spl mu/m wavelengths are relatively the same, the absorption of a Si substrate at 1.3 /spl mu/m is considerably less. The improved absorption contrast between the link material and silicon substrate at 1.3-/spl mu/m delivers a much wider laser process window. Both simulation and experimental results are given and discussed. A brief introduction of another new technique, which uses UV laser pulses for link processing, is given. This UV laser process delivers a laser beam spot size much smaller than 1.5 /spl mu/m.  相似文献   

11.
A planar waveguide based on an amorphous silicon-amorphous silicon carbide heterostructure is proposed for the realization of passive and active optical components at the wavelengths /spl lambda/=1.3-1.5 /spl mu/m. The waveguide has been realized by low temperature plasma enhanced chemical vapor deposition and is compatible with the standard microelectronic technologies. Thermo-optical induced modulation at /spl lambda/=1.5 /spl mu/m is demonstrated in this waveguide. Numerical simulations predict that operation frequencies of about 3 MHz are possible. The measurements have also allowed the determination of the previously unknown thermo-optical coefficient of undoped amorphous silicon at this wavelength.  相似文献   

12.
We report a numerical investigation on the transmission techniques to achieve the highest capacities for n/spl times/40-Gb/s systems and such results are used to design the lightpath distribution in a European network operating with Tb/s traffic. We consider the return-to-zero (RZ) transmission assuming different pulse duration to reach the highest capacity both in the case of single-channel and of wavelength-division multiplexing. We assume the transmission in links encompassing G.652 optical fibers since they are the most installed in the world, considering the compensation of the chromatic dispersion with optical-fiber gratings. Both the amplification with erbium-doped fiber amplifier (EDFA) and hybrid Raman/EDFA is considered. We use a novel algorithm for wavelength assignment in optical networks, taking into account both the traffic requirements and the physical impairments of the networks that manifest in the signal transmission. The algorithm is based on the technique of the removing lightpaths. We report an application for a Pan European network with 26 nodes.  相似文献   

13.
Long resonator micromachined tunable GaAs-AlAs Fabry-Perot filter   总被引:3,自引:0,他引:3  
We present novel concepts for tunable optical filters. Long resonant cavities of about 30-/spl mu/m length have been realized with two-chip designs. GaAs technology has been applied to filters that are designed for the use in dense wavelength-division multiplexing (WDM) at wavelengths around 1550 nm. A finesse of 46.7, a full-width at half-maximum (FWHM) of 1.2 nm and electrostatic tuning over a range of 103 nm with an applied voltage of 35 V has been achieved. An alternative tuning concept that allows to tune the resonator length 4 /spl mu/m by heating Ni-Cr resistors placed on the suspending beams of a membrane with an applied voltage of 2.7 V has been realized.  相似文献   

14.
The tensile strain on a submarine optical-fiber cable may reach a nonlinear elastic region when recovered from the sea floor. In this paper, a method is shown to characterize cable elongation up to the nonlinear plastic region by extending wire theory previously developed to evaluate cable strain in the elastic linear region. The results of applying this method to several optical-fiber cables agrees well with tensile test results of the cables when cable ends are prevented from twisting, as well as when they are free to rotate. Also, by evaluating the dependence of cable strain on cable materials, such as stranded-strength members and pressure-resistant conductor pipe, a practical submarine optical-fiber cable structure for deep-sea use is determined.  相似文献   

15.
High-performance transceiver-type optical WDM interface modules with a volume of only 36 cc have been developed for PDS subscriber systems. The new module comprises an optical WDM sub-module, hybrid-integrated transmitter and receiver circuits. In the WDM sub-module, a planar lightwave circuit chip was hermetically sealed together with laser and photodiode chips in order to minimize the size of the transceiver module. The lightwave circuit was formed on an optical-waveguide chip by adopting a high-silica based optical-waveguide technology. The circuit has a 3-dB directional coupler for bi-directional transmission with a 1.3-μm wavelength through a single fiber and a wavelength division multiplexer between both 1.3-μm and 1.55-μm wavelengths. The overall characteristics of the fabricated WDM sub-module achieved were a responsitivity of 0.25±0.05 A/W, an insertion loss approximately 3 dB at 1.55 μm and an isolation of 35 dB between both wavelengths. Optical output power of the fabricated transceiver module was -3.8 dBm. Also, receiver sensitivity of less than -35 dBm with an overload of over -14 dBm were obtained by introducing high-speed automatic gain and threshold control techniques. Thus, an allowable span loss of over 30 dB and an optical dynamic range of over 20 dB were attained. The preamble bit length required to reach stable receiver operation was confirmed to be within three bits  相似文献   

16.
We have investigated the characteristics of an In/sub 0.4/Ga/sub 0.6/As self-organized quantum-dot (QD) resonant-cavity photodiode. The QD epitaxy and the design of the two-dimensional photonic crystal cavity are tailored for 1.3-/spl mu/m wavelength operation. The input excitation to the photodiode is provided with an in-plane defect waveguide designed with the same photonic crystal. The measured spectral photocurrent characteristics reflect mode coupling between the waveguide and detector and the resonant cavity effect due to total internal reflection and photonic bandgap confinement. The photocurrent response is explained with a model involving the circulating fields in the cavity. The characteristics are also dependent of cavity size. Enhancement and narrowing (/spl sim/ 10 nm) of the photoresponse at /spl lambda//spl sim/1.3 /spl mu/m are observed. A spectral dip, of /spl sim/ 10-nm width, also observed at 1.3 /spl mu/m is possibly due to the anticrossing mechanism, uniquely present in photonic crystal waveguides.  相似文献   

17.
High-efficiency electroabsorption waveguide modulators have been designed and fabricated using strain-compensated InAsP-GaInP multiple quantum wells at 1.32-/spl mu/m wavelength. A typical 200-/spl mu/m-long modulator exhibits a fiber-to-fiber optical insertion loss of 9 dB and an optical saturation intensity larger than 10 mW. The 3-dB electrical bandwidth is in excess of 20 GHz with a 50-/spl Omega/ load termination. When used in an analog microwave fiber-optic link without amplification, a RF link efficiency as high as -38 dB is achieved at 10 mW input optical carrier power. These analog link characteristics are the first reported using MQW electroabsorption waveguide modulators at 1.32 /spl mu/m.  相似文献   

18.
An InGaAs-InAlAs multiple-quantum-well (MQW) electroabsorption (EA) waveguide modulator fabricated on a GaAs substrate has been designed and characterized at 1.3-/spl mu/m wavelength for microwave signal transmission on an analog fibre-optic link. The modulator structure with a lattice constant 2.5% larger than that of GaAs is grown upon a 0.7-/spl mu/m-thick three-stage compositionally step-graded In/sub z/Al/sub 1-z/As relaxed buffer. The waveguide modulator exhibits a high-electrooptic slope efficiency of 0.56 V/sup -1/, a 3-dB electrical bandwidth of 20 GHz, and a large optical saturation intensity in excess of 17 mW. These high-speed optoelectronic modulators could potentially be integrated with on-chip GaAs electronic driver circuits.  相似文献   

19.
Optimized second-harmonic generation (SHG) in quantum cascade (QC) lasers with specially designed active regions is reported. Nonlinear optical cascades of resonantly coupled intersubband transitions with giant second-order nonlinearities were integrated with each QC-laser active region. QC lasers with three-coupled quantum-well (QW) active regions showed up to 2 /spl mu/W of SHG light at 3.75 /spl mu/m wavelength at a fundamental peak power and wavelength of 1 W and 7.5 /spl mu/m, respectively. These lasers resulted in an external linear-to-nonlinear conversion efficiency of up to 1 /spl mu/W/W/sup 2/. An improved 2-QW active region design at fundamental and SHG wavelengths of 9.1 and 4.55 /spl mu/m, respectively, resulted in a 100-fold improved external linear-to-nonlinear power conversion efficiency, i.e. up to 100 /spl mu/W/W/sup 2/. Full theoretical treatment of nonlinear light generation in QC lasers is given, and excellent agreement with the experimental results is obtained. For the best structure, a second-order nonlinear susceptibility of 4.7/spl times/10/sup -5/ esu (2/spl times/10/sup 4/pm/V) is calculated, about two orders of magnitude above conventional nonlinear optical materials and bulk III-V semiconductors.  相似文献   

20.
This paper proposes a new technique for measuring in-service optical fibers, that uses an optical time domain reflectometer (OTDR). The feature of the proposed technique is that the OTDR light is in the same wavelength band as the video signal, which is distributed by using the subcarrier multiplexing (SCM) technique. In a 40-channel SCM system operating at a signal wavelength of 1.558 /spl mu/m, we show that the required video quality can be maintained, by using the proposed OTDR operating in the 1.55 /spl mu/m band, even though the measured fiber is in service and the OTDR light enters an optical receiver. Moreover, we clarify the conditions for undertaking measurements, without the need for optical filters designed to prevent OTDR light from degrading the SCM signal quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号